MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq1 Structured version   Visualization version   GIF version

Theorem coseq1 25039
Description: A complex number whose cosine is one is an integer multiple of . (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
coseq1 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ))

Proof of Theorem coseq1
StepHypRef Expression
1 2cn 11701 . . . . . . . 8 2 ∈ ℂ
2 2ne0 11730 . . . . . . . 8 2 ≠ 0
3 divcan2 11295 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
41, 2, 3mp3an23 1444 . . . . . . 7 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
54fveq2d 6668 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
6 halfcl 11851 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
7 cos2tsin 15522 . . . . . . 7 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2))))
86, 7syl 17 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2))))
95, 8eqtr3d 2858 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (1 − (2 · ((sin‘(𝐴 / 2))↑2))))
109eqeq1d 2823 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1))
116sincld 15473 . . . . . . . 8 (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
1211sqcld 13498 . . . . . . 7 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
13 mulcl 10610 . . . . . . 7 ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ)
141, 12, 13sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ)
15 ax-1cn 10584 . . . . . . 7 1 ∈ ℂ
16 subsub23 10880 . . . . . . 7 ((1 ∈ ℂ ∧ (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2))))
1715, 15, 16mp3an13 1443 . . . . . 6 ((2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2))))
1814, 17syl 17 . . . . 5 (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2))))
19 eqcom 2828 . . . . . 6 ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1))
20 1m1e0 11698 . . . . . . 7 (1 − 1) = 0
2120eqeq2i 2834 . . . . . 6 ((2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)
2219, 21bitri 276 . . . . 5 ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)
2318, 22syl6bb 288 . . . 4 (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0))
2410, 23bitrd 280 . . 3 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0))
25 mul0or 11269 . . . . 5 ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)))
261, 12, 25sylancr 587 . . . 4 (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)))
272neii 3018 . . . . 5 ¬ 2 = 0
28 biorf 930 . . . . 5 (¬ 2 = 0 → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)))
2927, 28ax-mp 5 . . . 4 (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))
3026, 29syl6bbr 290 . . 3 (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ ((sin‘(𝐴 / 2))↑2) = 0))
31 sqeq0 13476 . . . 4 ((sin‘(𝐴 / 2)) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0))
3211, 31syl 17 . . 3 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0))
3324, 30, 323bitrd 306 . 2 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (sin‘(𝐴 / 2)) = 0))
34 sineq0 25038 . . 3 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
356, 34syl 17 . 2 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
361, 2pm3.2i 471 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
37 picn 24974 . . . . 5 π ∈ ℂ
38 pire 24973 . . . . . 6 π ∈ ℝ
39 pipos 24975 . . . . . 6 0 < π
4038, 39gt0ne0ii 11165 . . . . 5 π ≠ 0
4137, 40pm3.2i 471 . . . 4 (π ∈ ℂ ∧ π ≠ 0)
42 divdiv1 11340 . . . 4 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π)))
4336, 41, 42mp3an23 1444 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) / π) = (𝐴 / (2 · π)))
4443eleq1d 2897 . 2 (𝐴 ∈ ℂ → (((𝐴 / 2) / π) ∈ ℤ ↔ (𝐴 / (2 · π)) ∈ ℤ))
4533, 35, 443bitrd 306 1 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3016  cfv 6349  (class class class)co 7145  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  cmin 10859   / cdiv 11286  2c2 11681  cz 11970  cexp 13419  sincsin 15407  cosccos 15408  πcpi 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-fbas 20472  df-fg 20473  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cld 21557  df-ntr 21558  df-cls 21559  df-nei 21636  df-lp 21674  df-perf 21675  df-cn 21765  df-cnp 21766  df-haus 21853  df-tx 22100  df-hmeo 22293  df-fil 22384  df-fm 22476  df-flim 22477  df-flf 22478  df-xms 22859  df-ms 22860  df-tms 22861  df-cncf 23415  df-limc 24393  df-dv 24394
This theorem is referenced by:  taupilem1  34485  dirkertrigeqlem1  42264  dirkertrigeq  42267
  Copyright terms: Public domain W3C validator