Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeq Structured version   Visualization version   GIF version

Theorem dirkertrigeq 39622
Description: Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkertrigeq.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
dirkertrigeq.n (𝜑𝑁 ∈ ℕ)
dirkertrigeq.f 𝐹 = (𝐷𝑁)
dirkertrigeq.h 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
Assertion
Ref Expression
dirkertrigeq (𝜑𝐹 = 𝐻)
Distinct variable groups:   𝑘,𝑁,𝑠   𝜑,𝑘,𝑠   𝑛,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑘,𝑛,𝑠)   𝐹(𝑘,𝑛,𝑠)   𝐻(𝑘,𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkertrigeq
StepHypRef Expression
1 dirkertrigeq.f . . 3 𝐹 = (𝐷𝑁)
21a1i 11 . 2 (𝜑𝐹 = (𝐷𝑁))
3 dirkertrigeq.n . . 3 (𝜑𝑁 ∈ ℕ)
4 dirkertrigeq.d . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
54dirkerval 39612 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
63, 5syl 17 . 2 (𝜑 → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
7 dirkertrigeq.h . . 3 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
8 2cnd 11037 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
93nncnd 10980 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108, 9mulcld 10004 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
11 peano2cn 10152 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) + 1) ∈ ℂ)
1210, 11syl 17 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
13 picn 24115 . . . . . . . . . 10 π ∈ ℂ
1413a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℂ)
15 2ne0 11057 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
17 pire 24114 . . . . . . . . . . 11 π ∈ ℝ
18 pipos 24116 . . . . . . . . . . 11 0 < π
1917, 18gt0ne0ii 10508 . . . . . . . . . 10 π ≠ 0
2019a1i 11 . . . . . . . . 9 (𝜑 → π ≠ 0)
2112, 8, 14, 16, 20divdiv1d 10776 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
2221eqcomd 2627 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
2322ad2antrr 761 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
24 iftrue 4064 . . . . . . 7 ((𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
2524adantl 482 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
26 elfzelz 12284 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
2726zcnd 11427 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
2827adantl 482 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
29 recn 9970 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
3029ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
31 2cn 11035 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
3231, 13mulcli 9989 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℂ
3332a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ∈ ℂ)
3431, 13, 15, 19mulne0i 10614 . . . . . . . . . . . . . . . . 17 (2 · π) ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ≠ 0)
3628, 30, 33, 35divassd 10780 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) = (𝑘 · (𝑠 / (2 · π))))
3726adantl 482 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℤ)
38 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) = 0)
39 simpl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → 𝑠 ∈ ℝ)
40 2rp 11781 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
41 pirp 24117 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ+
42 rpmulcl 11799 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
4340, 41, 42mp2an 707 . . . . . . . . . . . . . . . . . . 19 (2 · π) ∈ ℝ+
44 mod0 12615 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4539, 43, 44sylancl 693 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4638, 45mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 / (2 · π)) ∈ ℤ)
4746adantr 481 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 / (2 · π)) ∈ ℤ)
4837, 47zmulcld 11432 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑠 / (2 · π))) ∈ ℤ)
4936, 48eqeltrd 2698 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ)
5027adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
5129adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
5250, 51mulcld 10004 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
53 coseq1 24178 . . . . . . . . . . . . . . . 16 ((𝑘 · 𝑠) ∈ ℂ → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5452, 53syl 17 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5554adantlr 750 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5649, 55mpbird 247 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) = 1)
5756ralrimiva 2960 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5857adantll 749 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5958sumeq2d 14366 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)1)
60 fzfid 12712 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (1...𝑁) ∈ Fin)
61 1cnd 10000 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → 1 ∈ ℂ)
62 fsumconst 14450 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)1 = ((#‘(1...𝑁)) · 1))
6360, 61, 62syl2anc 692 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)1 = ((#‘(1...𝑁)) · 1))
643nnnn0d 11295 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
65 hashfz1 13074 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
6664, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → (#‘(1...𝑁)) = 𝑁)
6766oveq1d 6619 . . . . . . . . . . . 12 (𝜑 → ((#‘(1...𝑁)) · 1) = (𝑁 · 1))
689mulid1d 10001 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 1) = 𝑁)
6967, 68eqtrd 2655 . . . . . . . . . . 11 (𝜑 → ((#‘(1...𝑁)) · 1) = 𝑁)
7069ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((#‘(1...𝑁)) · 1) = 𝑁)
7159, 63, 703eqtrd 2659 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 𝑁)
7271oveq2d 6620 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + 𝑁))
739div1d 10737 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 1) = 𝑁)
7473eqcomd 2627 . . . . . . . . . . 11 (𝜑𝑁 = (𝑁 / 1))
7574oveq2d 6620 . . . . . . . . . 10 (𝜑 → ((1 / 2) + 𝑁) = ((1 / 2) + (𝑁 / 1)))
76 1cnd 10000 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
77 ax-1ne0 9949 . . . . . . . . . . . 12 1 ≠ 0
7877a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
7976, 8, 9, 76, 16, 78divadddivd 10789 . . . . . . . . . 10 (𝜑 → ((1 / 2) + (𝑁 / 1)) = (((1 · 1) + (𝑁 · 2)) / (2 · 1)))
8076, 76mulcld 10004 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) ∈ ℂ)
819, 8mulcld 10004 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) ∈ ℂ)
8280, 81addcomd 10182 . . . . . . . . . . . 12 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((𝑁 · 2) + (1 · 1)))
839, 8mulcomd 10005 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) = (2 · 𝑁))
8476mulid1d 10001 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) = 1)
8583, 84oveq12d 6622 . . . . . . . . . . . 12 (𝜑 → ((𝑁 · 2) + (1 · 1)) = ((2 · 𝑁) + 1))
8682, 85eqtrd 2655 . . . . . . . . . . 11 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((2 · 𝑁) + 1))
878mulid1d 10001 . . . . . . . . . . 11 (𝜑 → (2 · 1) = 2)
8886, 87oveq12d 6622 . . . . . . . . . 10 (𝜑 → (((1 · 1) + (𝑁 · 2)) / (2 · 1)) = (((2 · 𝑁) + 1) / 2))
8975, 79, 883eqtrd 2659 . . . . . . . . 9 (𝜑 → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9089ad2antrr 761 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9172, 90eqtrd 2655 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (((2 · 𝑁) + 1) / 2))
9291oveq1d 6619 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((((2 · 𝑁) + 1) / 2) / π))
9323, 25, 923eqtr4rd 2666 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
94 iffalse 4067 . . . . . . 7 (¬ (𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9594adantl 482 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9613a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ∈ ℂ)
9719a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ≠ 0)
9829, 96, 97divcan1d 10746 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → ((𝑠 / π) · π) = 𝑠)
9998eqcomd 2627 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → 𝑠 = ((𝑠 / π) · π))
10099ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = ((𝑠 / π) · π))
101 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 mod π) = 0)
102 simpl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
103 mod0 12615 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ π ∈ ℝ+) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
104102, 41, 103sylancl 693 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
105101, 104mpbid 222 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
106105adantlr 750 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
107 rpreccl 11801 . . . . . . . . . . . . . . . . . . . . . . 23 (π ∈ ℝ+ → (1 / π) ∈ ℝ+)
10841, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / π) ∈ ℝ+
109 moddi 12678 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / π) ∈ ℝ+𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
110108, 43, 109mp3an13 1412 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
11129, 96, 97divrec2d 10749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (𝑠 / π) = ((1 / π) · 𝑠))
112111eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · 𝑠) = (𝑠 / π))
11396, 97reccld 10738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (1 / π) ∈ ℂ)
11432a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · π) ∈ ℂ)
115113, 114mulcomd 10005 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = ((2 · π) · (1 / π)))
116 2cnd 11037 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → 2 ∈ ℂ)
117116, 96, 113mulassd 10007 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((2 · π) · (1 / π)) = (2 · (π · (1 / π))))
11813, 19recidi 10700 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π · (1 / π)) = 1
119118oveq2i 6615 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · (π · (1 / π))) = (2 · 1)
120116mulid1d 10001 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · 1) = 2)
121119, 120syl5eq 2667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · (π · (1 / π))) = 2)
122115, 117, 1213eqtrd 2659 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = 2)
123112, 122oveq12d 6622 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))) = ((𝑠 / π) mod 2))
124110, 123eqtr2d 2656 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
125124adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
126113adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ∈ ℂ)
127 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → 𝑠 ∈ ℝ)
12843a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · π) ∈ ℝ+)
129127, 128modcld 12614 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℝ)
130129recnd 10012 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℂ)
131130adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ∈ ℂ)
132 ax-1cn 9938 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
133132, 13, 77, 19divne0i 10717 . . . . . . . . . . . . . . . . . . . . 21 (1 / π) ≠ 0
134133a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ≠ 0)
135 neqne 2798 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑠 mod (2 · π)) = 0 → (𝑠 mod (2 · π)) ≠ 0)
136135adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ≠ 0)
137126, 131, 134, 136mulne0d 10623 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((1 / π) · (𝑠 mod (2 · π))) ≠ 0)
138125, 137eqnetrd 2857 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) ≠ 0)
139138adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) mod 2) ≠ 0)
140 oddfl 38950 . . . . . . . . . . . . . . . . 17 (((𝑠 / π) ∈ ℤ ∧ ((𝑠 / π) mod 2) ≠ 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
141106, 139, 140syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
142141oveq1d 6619 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
143100, 142eqtrd 2655 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
144143oveq2d 6620 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑘 · 𝑠) = (𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))
145144fveq2d 6152 . . . . . . . . . . . 12 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (cos‘(𝑘 · 𝑠)) = (cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
146145sumeq2sdv 14368 . . . . . . . . . . 11 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
147146oveq2d 6620 . . . . . . . . . 10 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))))
148147oveq1d 6619 . . . . . . . . 9 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
149148adantlll 753 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
1503ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
15117a1i 11 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → π ∈ ℝ)
152127, 151, 97redivcld 10797 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / π) ∈ ℝ)
153152rehalfcld 11223 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((𝑠 / π) / 2) ∈ ℝ)
154153flcld 12539 . . . . . . . . . . 11 (𝑠 ∈ ℝ → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
155154ad2antlr 762 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
156 eqid 2621 . . . . . . . . . 10 (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)
157150, 155, 156dirkertrigeqlem3 39621 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
158157adantlr 750 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
159141adantlll 753 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
160159eqcomd 2627 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · (⌊‘((𝑠 / π) / 2))) + 1) = (𝑠 / π))
161160oveq1d 6619 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = ((𝑠 / π) · π))
162161oveq2d 6620 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)) = ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)))
163162fveq2d 6152 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) = (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))))
164161oveq1d 6619 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2) = (((𝑠 / π) · π) / 2))
165164fveq2d 6152 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)) = (sin‘(((𝑠 / π) · π) / 2)))
166165oveq2d 6620 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2))) = ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))))
167163, 166oveq12d 6622 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))))
16898oveq2d 6620 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)) = ((𝑁 + (1 / 2)) · 𝑠))
169168fveq2d 6152 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
17098oveq1d 6619 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → (((𝑠 / π) · π) / 2) = (𝑠 / 2))
171170fveq2d 6152 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(((𝑠 / π) · π) / 2)) = (sin‘(𝑠 / 2)))
172171oveq2d 6620 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
173169, 172oveq12d 6622 . . . . . . . . . . 11 (𝑠 ∈ ℝ → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
174173adantl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
175174ad2antrr 761 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
176167, 175eqtrd 2655 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
177149, 158, 1763eqtrrd 2660 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
178 simplr 791 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
179 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 mod π) = 0)
180178, 41, 103sylancl 693 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
181179, 180mtbid 314 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 / π) ∈ ℤ)
182178recnd 10012 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℂ)
183 sineq0 24177 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
184182, 183syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
185181, 184mtbird 315 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (sin‘𝑠) = 0)
186185neqned 2797 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (sin‘𝑠) ≠ 0)
1873ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
188178, 186, 187dirkertrigeqlem2 39620 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
189188eqcomd 2627 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
190189adantlr 750 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
191177, 190pm2.61dan 831 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
19295, 191eqtr2d 2656 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
19393, 192pm2.61dan 831 . . . 4 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
194193mpteq2dva 4704 . . 3 (𝜑 → (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1957, 194syl5req 2668 . 2 (𝜑 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = 𝐻)
1962, 6, 1953eqtrd 2659 1 (𝜑𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  ifcif 4058  cmpt 4673  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  +crp 11776  ...cfz 12268  cfl 12531   mod cmo 12608  #chash 13057  Σcsu 14350  sincsin 14719  cosccos 14720  πcpi 14722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537
This theorem is referenced by:  dirkeritg  39623  fourierdlem83  39710
  Copyright terms: Public domain W3C validator