Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeqlem1 Structured version   Visualization version   GIF version

Theorem dirkertrigeqlem1 39619
Description: Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dirkertrigeqlem1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Distinct variable group:   𝑛,𝐾

Proof of Theorem dirkertrigeqlem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6612 . . . . 5 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
21oveq2d 6620 . . . 4 (𝑥 = 1 → (1...(2 · 𝑥)) = (1...(2 · 1)))
32sumeq1d 14365 . . 3 (𝑥 = 1 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)))
43eqeq1d 2623 . 2 (𝑥 = 1 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0))
5 oveq2 6612 . . . . 5 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
65oveq2d 6620 . . . 4 (𝑥 = 𝑦 → (1...(2 · 𝑥)) = (1...(2 · 𝑦)))
76sumeq1d 14365 . . 3 (𝑥 = 𝑦 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)))
87eqeq1d 2623 . 2 (𝑥 = 𝑦 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0))
9 oveq2 6612 . . . . 5 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
109oveq2d 6620 . . . 4 (𝑥 = (𝑦 + 1) → (1...(2 · 𝑥)) = (1...(2 · (𝑦 + 1))))
1110sumeq1d 14365 . . 3 (𝑥 = (𝑦 + 1) → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)))
1211eqeq1d 2623 . 2 (𝑥 = (𝑦 + 1) → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
13 oveq2 6612 . . . . 5 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
1413oveq2d 6620 . . . 4 (𝑥 = 𝐾 → (1...(2 · 𝑥)) = (1...(2 · 𝐾)))
1514sumeq1d 14365 . . 3 (𝑥 = 𝐾 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)))
1615eqeq1d 2623 . 2 (𝑥 = 𝐾 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0))
17 ax-1cn 9938 . . . . . 6 1 ∈ ℂ
18172timesi 11091 . . . . 5 (2 · 1) = (1 + 1)
1918oveq2i 6615 . . . 4 (1...(2 · 1)) = (1...(1 + 1))
2019sumeq1i 14362 . . 3 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π))
21 1z 11351 . . . . . . . 8 1 ∈ ℤ
22 uzid 11646 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
2321, 22ax-mp 5 . . . . . . 7 1 ∈ (ℤ‘1)
2423a1i 11 . . . . . 6 (⊤ → 1 ∈ (ℤ‘1))
25 elfzelz 12284 . . . . . . . . . 10 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℤ)
2625zcnd 11427 . . . . . . . . 9 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℂ)
2726adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → 𝑛 ∈ ℂ)
28 picn 24115 . . . . . . . . 9 π ∈ ℂ
2928a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → π ∈ ℂ)
3027, 29mulcld 10004 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (𝑛 · π) ∈ ℂ)
3130coscld 14786 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
32 id 22 . . . . . . . . 9 (𝑛 = (1 + 1) → 𝑛 = (1 + 1))
33 1p1e2 11078 . . . . . . . . 9 (1 + 1) = 2
3432, 33syl6eq 2671 . . . . . . . 8 (𝑛 = (1 + 1) → 𝑛 = 2)
3534oveq1d 6619 . . . . . . 7 (𝑛 = (1 + 1) → (𝑛 · π) = (2 · π))
3635fveq2d 6152 . . . . . 6 (𝑛 = (1 + 1) → (cos‘(𝑛 · π)) = (cos‘(2 · π)))
3724, 31, 36fsump1 14415 . . . . 5 (⊤ → Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))))
3837trud 1490 . . . 4 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π)))
39 coscl 14782 . . . . . . . 8 (π ∈ ℂ → (cos‘π) ∈ ℂ)
4028, 39ax-mp 5 . . . . . . 7 (cos‘π) ∈ ℂ
41 oveq1 6611 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 · π) = (1 · π))
4228mulid2i 9987 . . . . . . . . . 10 (1 · π) = π
4341, 42syl6eq 2671 . . . . . . . . 9 (𝑛 = 1 → (𝑛 · π) = π)
4443fveq2d 6152 . . . . . . . 8 (𝑛 = 1 → (cos‘(𝑛 · π)) = (cos‘π))
4544fsum1 14406 . . . . . . 7 ((1 ∈ ℤ ∧ (cos‘π) ∈ ℂ) → Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π))
4621, 40, 45mp2an 707 . . . . . 6 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π)
47 cospi 24128 . . . . . 6 (cos‘π) = -1
4846, 47eqtri 2643 . . . . 5 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = -1
49 cos2pi 24132 . . . . 5 (cos‘(2 · π)) = 1
5048, 49oveq12i 6616 . . . 4 𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))) = (-1 + 1)
51 neg1cn 11068 . . . . 5 -1 ∈ ℂ
52 1pneg1e0 11073 . . . . 5 (1 + -1) = 0
5317, 51, 52addcomli 10172 . . . 4 (-1 + 1) = 0
5438, 50, 533eqtri 2647 . . 3 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = 0
5520, 54eqtri 2643 . 2 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0
5618oveq2i 6615 . . . . . . . 8 ((2 · 𝑦) + (2 · 1)) = ((2 · 𝑦) + (1 + 1))
57 2cnd 11037 . . . . . . . . 9 (𝑦 ∈ ℕ → 2 ∈ ℂ)
58 nncn 10972 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5917a1i 11 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ∈ ℂ)
6057, 58, 59adddid 10008 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
6157, 58mulcld 10004 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
6261, 59, 59addassd 10006 . . . . . . . 8 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = ((2 · 𝑦) + (1 + 1)))
6356, 60, 623eqtr4a 2681 . . . . . . 7 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = (((2 · 𝑦) + 1) + 1))
6463oveq2d 6620 . . . . . 6 (𝑦 ∈ ℕ → (1...(2 · (𝑦 + 1))) = (1...(((2 · 𝑦) + 1) + 1)))
6564sumeq1d 14365 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
6665adantr 481 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
67 1red 9999 . . . . . . . 8 (𝑦 ∈ ℕ → 1 ∈ ℝ)
68 2re 11034 . . . . . . . . . . 11 2 ∈ ℝ
6968a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ)
70 nnre 10971 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7169, 70remulcld 10014 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ)
7271, 67readdcld 10013 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℝ)
73 2rp 11781 . . . . . . . . . . 11 2 ∈ ℝ+
7473a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ+)
75 nnrp 11786 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
7674, 75rpmulcld 11832 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
7767, 76ltaddrp2d 11850 . . . . . . . 8 (𝑦 ∈ ℕ → 1 < ((2 · 𝑦) + 1))
7867, 72, 77ltled 10129 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ ((2 · 𝑦) + 1))
79 2z 11353 . . . . . . . . . . 11 2 ∈ ℤ
8079a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℤ)
81 nnz 11343 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8280, 81zmulcld 11432 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℤ)
8382peano2zd 11429 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℤ)
84 eluz 11645 . . . . . . . 8 ((1 ∈ ℤ ∧ ((2 · 𝑦) + 1) ∈ ℤ) → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8521, 83, 84sylancr 694 . . . . . . 7 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8678, 85mpbird 247 . . . . . 6 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ (ℤ‘1))
87 elfzelz 12284 . . . . . . . . . 10 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℤ)
8887zcnd 11427 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℂ)
8928a1i 11 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → π ∈ ℂ)
9088, 89mulcld 10004 . . . . . . . 8 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (𝑛 · π) ∈ ℂ)
9190coscld 14786 . . . . . . 7 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
9291adantl 482 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
93 oveq1 6611 . . . . . . 7 (𝑛 = (((2 · 𝑦) + 1) + 1) → (𝑛 · π) = ((((2 · 𝑦) + 1) + 1) · π))
9493fveq2d 6152 . . . . . 6 (𝑛 = (((2 · 𝑦) + 1) + 1) → (cos‘(𝑛 · π)) = (cos‘((((2 · 𝑦) + 1) + 1) · π)))
9586, 92, 94fsump1 14415 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
9695adantr 481 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
97 1lt2 11138 . . . . . . . . . . . 12 1 < 2
9897a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 1 < 2)
99 2t1e2 11120 . . . . . . . . . . . 12 (2 · 1) = 2
100 nnge1 10990 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
10167, 70, 74lemul2d 11860 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 ≤ 𝑦 ↔ (2 · 1) ≤ (2 · 𝑦)))
102100, 101mpbid 222 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · 1) ≤ (2 · 𝑦))
10399, 102syl5eqbrr 4649 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 2 ≤ (2 · 𝑦))
10467, 69, 71, 98, 103ltletrd 10141 . . . . . . . . . 10 (𝑦 ∈ ℕ → 1 < (2 · 𝑦))
10567, 71, 104ltled 10129 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ≤ (2 · 𝑦))
106 eluz 11645 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (2 · 𝑦) ∈ ℤ) → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
10721, 82, 106sylancr 694 . . . . . . . . 9 (𝑦 ∈ ℕ → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
108105, 107mpbird 247 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ (ℤ‘1))
109 elfzelz 12284 . . . . . . . . . . . 12 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℤ)
110109zcnd 11427 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℂ)
11128a1i 11 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → π ∈ ℂ)
112110, 111mulcld 10004 . . . . . . . . . 10 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (𝑛 · π) ∈ ℂ)
113112coscld 14786 . . . . . . . . 9 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
114113adantl 482 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...((2 · 𝑦) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
115 oveq1 6611 . . . . . . . . 9 (𝑛 = ((2 · 𝑦) + 1) → (𝑛 · π) = (((2 · 𝑦) + 1) · π))
116115fveq2d 6152 . . . . . . . 8 (𝑛 = ((2 · 𝑦) + 1) → (cos‘(𝑛 · π)) = (cos‘(((2 · 𝑦) + 1) · π)))
117108, 114, 116fsump1 14415 . . . . . . 7 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))))
11833, 99eqtr4i 2646 . . . . . . . . . . . . 13 (1 + 1) = (2 · 1)
119118a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (1 + 1) = (2 · 1))
120119oveq2d 6620 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · 𝑦) + (1 + 1)) = ((2 · 𝑦) + (2 · 1)))
121120, 62, 603eqtr4d 2665 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = (2 · (𝑦 + 1)))
122121oveq1d 6619 . . . . . . . . 9 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 1) + 1) · π) = ((2 · (𝑦 + 1)) · π))
123122fveq2d 6152 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = (cos‘((2 · (𝑦 + 1)) · π)))
12458, 59addcld 10003 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
12528a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → π ∈ ℂ)
12657, 124, 125mulassd 10007 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) = (2 · ((𝑦 + 1) · π)))
127126oveq1d 6619 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = ((2 · ((𝑦 + 1) · π)) / (2 · π)))
128124, 125mulcld 10004 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑦 + 1) · π) ∈ ℂ)
129 0re 9984 . . . . . . . . . . . . . 14 0 ∈ ℝ
130 pipos 24116 . . . . . . . . . . . . . 14 0 < π
131129, 130gtneii 10093 . . . . . . . . . . . . 13 π ≠ 0
132131a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → π ≠ 0)
13374rpne0d 11821 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
134128, 125, 57, 132, 133divcan5d 10771 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · ((𝑦 + 1) · π)) / (2 · π)) = (((𝑦 + 1) · π) / π))
135124, 125, 132divcan4d 10751 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑦 + 1) · π) / π) = (𝑦 + 1))
136127, 134, 1353eqtrd 2659 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = (𝑦 + 1))
13781peano2zd 11429 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
138136, 137eqeltrd 2698 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ)
139 peano2cn 10152 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦 + 1) ∈ ℂ)
14058, 139syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
14157, 140mulcld 10004 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
142141, 125mulcld 10004 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) ∈ ℂ)
143 coseq1 24178 . . . . . . . . . 10 (((2 · (𝑦 + 1)) · π) ∈ ℂ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
144142, 143syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
145138, 144mpbird 247 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((2 · (𝑦 + 1)) · π)) = 1)
146123, 145eqtrd 2655 . . . . . . 7 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = 1)
147117, 146oveq12d 6622 . . . . . 6 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
148147adantr 481 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
149 simpr 477 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0)
15061, 59, 125adddird 10009 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (((2 · 𝑦) · π) + (1 · π)))
15161, 125mulcld 10004 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) ∈ ℂ)
15242, 125syl5eqel 2702 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) ∈ ℂ)
153151, 152addcomd 10182 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) · π) + (1 · π)) = ((1 · π) + ((2 · 𝑦) · π)))
15442a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) = π)
15557, 58mulcomd 10005 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · 𝑦) = (𝑦 · 2))
156155oveq1d 6619 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = ((𝑦 · 2) · π))
15758, 57, 125mulassd 10007 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑦 · 2) · π) = (𝑦 · (2 · π)))
158156, 157eqtrd 2655 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = (𝑦 · (2 · π)))
159154, 158oveq12d 6622 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((1 · π) + ((2 · 𝑦) · π)) = (π + (𝑦 · (2 · π))))
160150, 153, 1593eqtrd 2659 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (π + (𝑦 · (2 · π))))
161160fveq2d 6152 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = (cos‘(π + (𝑦 · (2 · π)))))
162 cosper 24138 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑦 ∈ ℤ) → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
16328, 81, 162sylancr 694 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
16447a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘π) = -1)
165161, 163, 1643eqtrd 2659 . . . . . . . . 9 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
166165adantr 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
167149, 166oveq12d 6622 . . . . . . 7 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) = (0 + -1))
168167oveq1d 6619 . . . . . 6 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = ((0 + -1) + 1))
16951addid2i 10168 . . . . . . . 8 (0 + -1) = -1
170169oveq1i 6614 . . . . . . 7 ((0 + -1) + 1) = (-1 + 1)
171170, 53eqtri 2643 . . . . . 6 ((0 + -1) + 1) = 0
172168, 171syl6eq 2671 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = 0)
173148, 172eqtrd 2655 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = 0)
17466, 96, 1733eqtrd 2659 . . 3 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0)
175174ex 450 . 2 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0 → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
1764, 8, 12, 16, 55, 175nnind 10982 1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wtru 1481  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  cz 11321  cuz 11631  +crp 11776  ...cfz 12268  Σcsu 14350  cosccos 14720  πcpi 14722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537
This theorem is referenced by:  dirkertrigeqlem3  39621
  Copyright terms: Public domain W3C validator