MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr2sum Structured version   Visualization version   GIF version

Theorem dchr2sum 25849
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr2sum.g 𝐺 = (DChr‘𝑁)
dchr2sum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr2sum.d 𝐷 = (Base‘𝐺)
dchr2sum.b 𝐵 = (Base‘𝑍)
dchr2sum.x (𝜑𝑋𝐷)
dchr2sum.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchr2sum (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Distinct variable groups:   𝐵,𝑎   𝐺,𝑎   𝜑,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝑁(𝑎)

Proof of Theorem dchr2sum
StepHypRef Expression
1 dchr2sum.g . . 3 𝐺 = (DChr‘𝑁)
2 dchr2sum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchr2sum.d . . 3 𝐷 = (Base‘𝐺)
4 eqid 2821 . . 3 (0g𝐺) = (0g𝐺)
5 dchr2sum.x . . . . . 6 (𝜑𝑋𝐷)
61, 3dchrrcl 25816 . . . . . 6 (𝑋𝐷𝑁 ∈ ℕ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℕ)
81dchrabl 25830 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9 ablgrp 18911 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
107, 8, 93syl 18 . . . 4 (𝜑𝐺 ∈ Grp)
11 dchr2sum.y . . . 4 (𝜑𝑌𝐷)
12 eqid 2821 . . . . 5 (-g𝐺) = (-g𝐺)
133, 12grpsubcl 18179 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
1410, 5, 11, 13syl3anc 1367 . . 3 (𝜑 → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
15 dchr2sum.b . . 3 𝐵 = (Base‘𝑍)
161, 2, 3, 4, 14, 15dchrsum 25845 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0))
175adantr 483 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑋𝐷)
1811adantr 483 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌𝐷)
19 eqid 2821 . . . . . . . 8 (+g𝐺) = (+g𝐺)
20 eqid 2821 . . . . . . . 8 (invg𝐺) = (invg𝐺)
213, 19, 20, 12grpsubval 18149 . . . . . . 7 ((𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2217, 18, 21syl2anc 586 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
237adantr 483 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑁 ∈ ℕ)
2423, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝐺 ∈ Grp)
253, 20grpinvcl 18151 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑌𝐷) → ((invg𝐺)‘𝑌) ∈ 𝐷)
2624, 18, 25syl2anc 586 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐷)
271, 2, 3, 19, 17, 26dchrmul 25824 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋f · ((invg𝐺)‘𝑌)))
2822, 27eqtrd 2856 . . . . 5 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋f · ((invg𝐺)‘𝑌)))
2928fveq1d 6672 . . . 4 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎))
301, 2, 3, 15, 17dchrf 25818 . . . . . 6 ((𝜑𝑎𝐵) → 𝑋:𝐵⟶ℂ)
3130ffnd 6515 . . . . 5 ((𝜑𝑎𝐵) → 𝑋 Fn 𝐵)
321, 2, 3, 15, 26dchrf 25818 . . . . . 6 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌):𝐵⟶ℂ)
3332ffnd 6515 . . . . 5 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) Fn 𝐵)
3415fvexi 6684 . . . . . 6 𝐵 ∈ V
3534a1i 11 . . . . 5 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
36 simpr 487 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
37 fnfvof 7423 . . . . 5 (((𝑋 Fn 𝐵 ∧ ((invg𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎𝐵)) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
3831, 33, 35, 36, 37syl22anc 836 . . . 4 ((𝜑𝑎𝐵) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
391, 3, 18, 20dchrinv 25837 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) = (∗ ∘ 𝑌))
4039fveq1d 6672 . . . . . 6 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎))
411, 2, 3, 15, 18dchrf 25818 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌:𝐵⟶ℂ)
42 fvco3 6760 . . . . . . 7 ((𝑌:𝐵⟶ℂ ∧ 𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4341, 36, 42syl2anc 586 . . . . . 6 ((𝜑𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4440, 43eqtrd 2856 . . . . 5 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4544oveq2d 7172 . . . 4 ((𝜑𝑎𝐵) → ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4629, 38, 453eqtrd 2860 . . 3 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4746sumeq2dv 15060 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))))
483, 4, 12grpsubeq0 18185 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
4910, 5, 11, 48syl3anc 1367 . . 3 (𝜑 → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
5049ifbid 4489 . 2 (𝜑 → if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
5116, 47, 503eqtr3d 2864 1 (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  ifcif 4467  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  0cc0 10537   · cmul 10542  cn 11638  ccj 14455  Σcsu 15042  ϕcphi 16101  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104  -gcsg 18105  Abelcabl 18907  ℤ/nczn 20650  DChrcdchr 25808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-dvds 15608  df-gcd 15844  df-phi 16103  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-qus 16782  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-cntz 18447  df-od 18656  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zn 20654  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141  df-dchr 25809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator