Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcncxp1 Structured version   Visualization version   GIF version

Theorem dvcncxp1 24418
 Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvcncxp1.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvcncxp1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷

Proof of Theorem dvcncxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 9989 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
3 dvcncxp1.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
4 difss 3721 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
53, 4eqsstri 3620 . . . . . 6 𝐷 ⊆ ℂ
65sseli 3584 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
73logdmn0 24320 . . . . 5 (𝑥𝐷𝑥 ≠ 0)
86, 7logcld 24255 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
98adantl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (log‘𝑥) ∈ ℂ)
106, 7reccld 10754 . . . 4 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
1110adantl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (1 / 𝑥) ∈ ℂ)
12 mulcl 9980 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
13 efcl 14757 . . . 4 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
1412, 13syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
15 ovexd 6645 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
163dvlog 24331 . . . 4 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
173logcn 24327 . . . . . . . 8 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
18 cncff 22636 . . . . . . . 8 ((log ↾ 𝐷) ∈ (𝐷cn→ℂ) → (log ↾ 𝐷):𝐷⟶ℂ)
1917, 18mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ 𝐷):𝐷⟶ℂ)
2019feqmptd 6216 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
21 fvres 6174 . . . . . . 7 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
2221mpteq2ia 4710 . . . . . 6 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (log‘𝑥))
2320, 22syl6eq 2671 . . . . 5 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ (log‘𝑥)))
2423oveq2d 6631 . . . 4 (𝐴 ∈ ℂ → (ℂ D (log ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (log‘𝑥))))
2516, 24syl5reqr 2670 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (log‘𝑥))) = (𝑥𝐷 ↦ (1 / 𝑥)))
26 simpl 473 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
27 efcl 14757 . . . . 5 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
2827adantl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
29 simpr 477 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
30 1cnd 10016 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
312dvmptid 23660 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
32 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
332, 29, 30, 31, 32dvmptcmul 23667 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
34 mulid1 9997 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3534mpteq2dv 4715 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
3633, 35eqtrd 2655 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
37 dvef 23681 . . . . 5 (ℂ D exp) = exp
38 eff 14756 . . . . . . . 8 exp:ℂ⟶ℂ
3938a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4039feqmptd 6216 . . . . . 6 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4140oveq2d 6631 . . . . 5 (𝐴 ∈ ℂ → (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))))
4237, 41, 403eqtr3a 2679 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
43 fveq2 6158 . . . 4 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
442, 2, 12, 26, 28, 28, 36, 42, 43, 43dvmptco 23675 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
45 oveq2 6623 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
4645fveq2d 6162 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
4746oveq1d 6630 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
482, 2, 9, 11, 14, 15, 25, 44, 46, 47dvmptco 23675 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
496adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
507adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
51 simpl 473 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝐴 ∈ ℂ)
5249, 50, 51cxpefd 24392 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
5352mpteq2dva 4714 . . 3 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) = (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥)))))
5453oveq2d 6631 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))))
55 1cnd 10016 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 1 ∈ ℂ)
5649, 50, 51, 55cxpsubd 24398 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
5749cxp1d 24386 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐1) = 𝑥)
5857oveq2d 6631 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
5949, 51cxpcld 24388 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) ∈ ℂ)
6059, 49, 50divrecd 10764 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6156, 58, 603eqtrd 2659 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6261oveq2d 6631 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
6351, 59, 11mul12d 10205 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6459, 51, 11mulassd 10023 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6563, 64eqtr4d 2658 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
6652oveq1d 6630 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
6766oveq1d 6630 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6862, 65, 673eqtrd 2659 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6968mpteq2dva 4714 . 2 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
7048, 54, 693eqtr4d 2665 1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3190   ∖ cdif 3557  {cpr 4157   ↦ cmpt 4683   ↾ cres 5086  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615  ℂcc 9894  ℝcr 9895  0cc0 9896  1c1 9897   · cmul 9901  -∞cmnf 10032   − cmin 10226   / cdiv 10644  (,]cioc 12134  expce 14736  –cn→ccncf 22619   D cdv 23567  logclog 24239  ↑𝑐ccxp 24240 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-ef 14742  df-sin 14744  df-cos 14745  df-tan 14746  df-pi 14747  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-cmp 21130  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571  df-log 24241  df-cxp 24242 This theorem is referenced by:  dvcnsqrt  24419  binomcxplemdvbinom  38073
 Copyright terms: Public domain W3C validator