Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem5 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem5 26700
 Description: Lemma for crctcshwlkn0 26707. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (#‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
Assertion
Ref Expression
crctcshwlkn0lem5 (𝜑 → ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖,𝑗   𝑥,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝑃(𝑗)   𝑄(𝑥,𝑖,𝑗)   𝑆(𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑖,𝑗)   𝐼(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem crctcshwlkn0lem5
StepHypRef Expression
1 crctcshwlkn0lem.p . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
2 crctcshwlkn0lem.s . . . . . . 7 (𝜑𝑆 ∈ (1..^𝑁))
3 elfzoelz 12466 . . . . . . . . . . . 12 (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → 𝑗 ∈ ℤ)
43zcnd 11480 . . . . . . . . . . 11 (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → 𝑗 ∈ ℂ)
54adantl 482 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑗 ∈ ℂ)
6 1cnd 10053 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 1 ∈ ℂ)
7 elfzoelz 12466 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
87zcnd 11480 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℂ)
98adantr 481 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑆 ∈ ℂ)
10 elfzoel2 12465 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
1110zcnd 11480 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℂ)
1211adantr 481 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑁 ∈ ℂ)
135, 6, 9, 122addsubd 10439 . . . . . . . . 9 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (((𝑗 + 1) + 𝑆) − 𝑁) = (((𝑗 + 𝑆) − 𝑁) + 1))
1413eqcomd 2627 . . . . . . . 8 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁))
15 elfzo1 12513 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
16 nnz 11396 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
17163ad2ant2 1082 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℤ)
1817adantr 481 . . . . . . . . . . . . . . 15 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑁 ∈ ℤ)
193adantl 482 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑗 ∈ ℤ)
20 nnz 11396 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ ℕ → 𝑆 ∈ ℤ)
21203ad2ant1 1081 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑆 ∈ ℤ)
2221adantr 481 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑆 ∈ ℤ)
2319, 22zaddcld 11483 . . . . . . . . . . . . . . 15 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (𝑗 + 𝑆) ∈ ℤ)
24 elfzo2 12469 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) ↔ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁))
25 eluz2 11690 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ↔ (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑗))
26 zre 11378 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
27 nnre 11024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
28 nnre 11024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2927, 28anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
30 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑁 ∈ ℝ)
31 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑆 ∈ ℝ)
3230, 31resubcld 10455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
3332lep1d 10952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (𝑁𝑆) ≤ ((𝑁𝑆) + 1))
34 1red 10052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 1 ∈ ℝ)
3532, 34readdcld 10066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → ((𝑁𝑆) + 1) ∈ ℝ)
36 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
37 letr 10128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ ∧ 𝑗 ∈ ℝ) → (((𝑁𝑆) ≤ ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝑗) → (𝑁𝑆) ≤ 𝑗))
3832, 35, 36, 37syl3anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (((𝑁𝑆) ≤ ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝑗) → (𝑁𝑆) ≤ 𝑗))
3933, 38mpand 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (((𝑁𝑆) + 1) ≤ 𝑗 → (𝑁𝑆) ≤ 𝑗))
4030, 31, 36lesubaddd 10621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → ((𝑁𝑆) ≤ 𝑗𝑁 ≤ (𝑗 + 𝑆)))
4139, 40sylibd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (((𝑁𝑆) + 1) ≤ 𝑗𝑁 ≤ (𝑗 + 𝑆)))
4241ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑗 ∈ ℝ → (((𝑁𝑆) + 1) ≤ 𝑗𝑁 ≤ (𝑗 + 𝑆))))
4329, 42syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑗 ∈ ℝ → (((𝑁𝑆) + 1) ≤ 𝑗𝑁 ≤ (𝑗 + 𝑆))))
44433adant3 1080 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 ∈ ℝ → (((𝑁𝑆) + 1) ≤ 𝑗𝑁 ≤ (𝑗 + 𝑆))))
4526, 44syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℤ → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (((𝑁𝑆) + 1) ≤ 𝑗𝑁 ≤ (𝑗 + 𝑆))))
4645com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝑗 → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ≤ (𝑗 + 𝑆))))
4746imp 445 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑗) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ≤ (𝑗 + 𝑆)))
48473adant1 1078 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑗) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ≤ (𝑗 + 𝑆)))
4925, 48sylbi 207 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ≤ (𝑗 + 𝑆)))
50493ad2ant1 1081 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ≤ (𝑗 + 𝑆)))
5150com12 32 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁) → 𝑁 ≤ (𝑗 + 𝑆)))
5224, 51syl5bi 232 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → 𝑁 ≤ (𝑗 + 𝑆)))
5352imp 445 . . . . . . . . . . . . . . 15 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑁 ≤ (𝑗 + 𝑆))
54 eluz2 11690 . . . . . . . . . . . . . . 15 ((𝑗 + 𝑆) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑗 + 𝑆) ∈ ℤ ∧ 𝑁 ≤ (𝑗 + 𝑆)))
5518, 23, 53, 54syl3anbrc 1245 . . . . . . . . . . . . . 14 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (𝑗 + 𝑆) ∈ (ℤ𝑁))
56 uznn0sub 11716 . . . . . . . . . . . . . 14 ((𝑗 + 𝑆) ∈ (ℤ𝑁) → ((𝑗 + 𝑆) − 𝑁) ∈ ℕ0)
5755, 56syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → ((𝑗 + 𝑆) − 𝑁) ∈ ℕ0)
58 simpl2 1064 . . . . . . . . . . . . 13 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑁 ∈ ℕ)
5926adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
60 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → 𝑆 ∈ ℝ)
61 ax-1 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℝ → (𝑆 ∈ ℝ → 𝑁 ∈ ℝ))
6261imdistanri 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ))
6362adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ))
64 lt2add 10510 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑗 < 𝑁𝑆 < 𝑁) → (𝑗 + 𝑆) < (𝑁 + 𝑁)))
6559, 60, 63, 64syl21anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → ((𝑗 < 𝑁𝑆 < 𝑁) → (𝑗 + 𝑆) < (𝑁 + 𝑁)))
6659, 60readdcld 10066 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → (𝑗 + 𝑆) ∈ ℝ)
67 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℝ)
6866, 67, 67ltsubaddd 10620 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → (((𝑗 + 𝑆) − 𝑁) < 𝑁 ↔ (𝑗 + 𝑆) < (𝑁 + 𝑁)))
6965, 68sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝑗 ∈ ℤ) → ((𝑗 < 𝑁𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁))
7069ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑗 ∈ ℤ → ((𝑗 < 𝑁𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁)))
7170com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑗 < 𝑁𝑆 < 𝑁) → (𝑗 ∈ ℤ → ((𝑗 + 𝑆) − 𝑁) < 𝑁)))
7271expcomd 454 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → (𝑗 < 𝑁 → (𝑗 ∈ ℤ → ((𝑗 + 𝑆) − 𝑁) < 𝑁))))
7329, 72syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → (𝑗 < 𝑁 → (𝑗 ∈ ℤ → ((𝑗 + 𝑆) − 𝑁) < 𝑁))))
74733impia 1260 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 < 𝑁 → (𝑗 ∈ ℤ → ((𝑗 + 𝑆) − 𝑁) < 𝑁)))
7574com13 88 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℤ → (𝑗 < 𝑁 → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁)))
76753ad2ant2 1082 . . . . . . . . . . . . . . . . . 18 ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑗) → (𝑗 < 𝑁 → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁)))
7725, 76sylbi 207 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) → (𝑗 < 𝑁 → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁)))
7877imp 445 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑗 < 𝑁) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁))
79783adant2 1079 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁))
8024, 79sylbi 207 . . . . . . . . . . . . . 14 (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 + 𝑆) − 𝑁) < 𝑁))
8180impcom 446 . . . . . . . . . . . . 13 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → ((𝑗 + 𝑆) − 𝑁) < 𝑁)
8257, 58, 813jca 1241 . . . . . . . . . . . 12 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (((𝑗 + 𝑆) − 𝑁) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑗 + 𝑆) − 𝑁) < 𝑁))
8315, 82sylanb 489 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (((𝑗 + 𝑆) − 𝑁) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑗 + 𝑆) − 𝑁) < 𝑁))
84 elfzo0 12504 . . . . . . . . . . 11 (((𝑗 + 𝑆) − 𝑁) ∈ (0..^𝑁) ↔ (((𝑗 + 𝑆) − 𝑁) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑗 + 𝑆) − 𝑁) < 𝑁))
8583, 84sylibr 224 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → ((𝑗 + 𝑆) − 𝑁) ∈ (0..^𝑁))
8685adantr 481 . . . . . . . . 9 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) → ((𝑗 + 𝑆) − 𝑁) ∈ (0..^𝑁))
87 fveq2 6189 . . . . . . . . . . . 12 (𝑖 = ((𝑗 + 𝑆) − 𝑁) → (𝑃𝑖) = (𝑃‘((𝑗 + 𝑆) − 𝑁)))
8887adantl 482 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → (𝑃𝑖) = (𝑃‘((𝑗 + 𝑆) − 𝑁)))
89 oveq1 6654 . . . . . . . . . . . . 13 (𝑖 = ((𝑗 + 𝑆) − 𝑁) → (𝑖 + 1) = (((𝑗 + 𝑆) − 𝑁) + 1))
9089fveq2d 6193 . . . . . . . . . . . 12 (𝑖 = ((𝑗 + 𝑆) − 𝑁) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((𝑗 + 𝑆) − 𝑁) + 1)))
91 simpr 477 . . . . . . . . . . . . 13 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) → (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁))
9291fveq2d 6193 . . . . . . . . . . . 12 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) → (𝑃‘(((𝑗 + 𝑆) − 𝑁) + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)))
9390, 92sylan9eqr 2677 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)))
9488, 93eqeq12d 2636 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → ((𝑃𝑖) = (𝑃‘(𝑖 + 1)) ↔ (𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))))
95 fveq2 6189 . . . . . . . . . . . . 13 (𝑖 = ((𝑗 + 𝑆) − 𝑁) → (𝐹𝑖) = (𝐹‘((𝑗 + 𝑆) − 𝑁)))
9695fveq2d 6193 . . . . . . . . . . . 12 (𝑖 = ((𝑗 + 𝑆) − 𝑁) → (𝐼‘(𝐹𝑖)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))
9787sneqd 4187 . . . . . . . . . . . 12 (𝑖 = ((𝑗 + 𝑆) − 𝑁) → {(𝑃𝑖)} = {(𝑃‘((𝑗 + 𝑆) − 𝑁))})
9896, 97eqeq12d 2636 . . . . . . . . . . 11 (𝑖 = ((𝑗 + 𝑆) − 𝑁) → ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖)} ↔ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}))
9998adantl 482 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖)} ↔ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}))
10088, 93preq12d 4274 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))})
101 simpr 477 . . . . . . . . . . . . 13 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → 𝑖 = ((𝑗 + 𝑆) − 𝑁))
102101fveq2d 6193 . . . . . . . . . . . 12 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → (𝐹𝑖) = (𝐹‘((𝑗 + 𝑆) − 𝑁)))
103102fveq2d 6193 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → (𝐼‘(𝐹𝑖)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))
104100, 103sseq12d 3632 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) ↔ {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))))
10594, 99, 104ifpbi123d 1027 . . . . . . . . 9 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) ∧ 𝑖 = ((𝑗 + 𝑆) − 𝑁)) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))))
10686, 105rspcdv 3310 . . . . . . . 8 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) ∧ (((𝑗 + 𝑆) − 𝑁) + 1) = (((𝑗 + 1) + 𝑆) − 𝑁)) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))))
10714, 106mpdan 702 . . . . . . 7 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))))
1082, 107sylan 488 . . . . . 6 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))))
109108ex 450 . . . . 5 (𝜑 → (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))))))
1101, 109mpid 44 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))))
111110imp 445 . . 3 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))))
112 elfzofz 12481 . . . . 5 (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → 𝑗 ∈ (((𝑁𝑆) + 1)...𝑁))
113 crctcshwlkn0lem.q . . . . . 6 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
1142, 113crctcshwlkn0lem3 26698 . . . . 5 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)))
115112, 114sylan2 491 . . . 4 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)))
116 fzofzp1 12561 . . . . 5 (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → (𝑗 + 1) ∈ (((𝑁𝑆) + 1)...𝑁))
1172, 113crctcshwlkn0lem3 26698 . . . . 5 ((𝜑 ∧ (𝑗 + 1) ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)))
118116, 117sylan2 491 . . . 4 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)))
119 crctcshwlkn0lem.h . . . . . . 7 𝐻 = (𝐹 cyclShift 𝑆)
120119fveq1i 6190 . . . . . 6 (𝐻𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗)
121 crctcshwlkn0lem.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝐴)
122121adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝐹 ∈ Word 𝐴)
1232, 7syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ ℤ)
124123adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑆 ∈ ℤ)
125 ltle 10123 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁𝑆𝑁))
12629, 125syl 17 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁𝑆𝑁))
1271263impia 1260 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑆𝑁)
128 nnnn0 11296 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0)
129 nnnn0 11296 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
130128, 129anim12i 590 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 ∈ ℕ0𝑁 ∈ ℕ0))
1311303adant3 1080 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑆 ∈ ℕ0𝑁 ∈ ℕ0))
132 nn0sub 11340 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑆𝑁 ↔ (𝑁𝑆) ∈ ℕ0))
133131, 132syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑆𝑁 ↔ (𝑁𝑆) ∈ ℕ0))
134127, 133mpbid 222 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
13515, 134sylbi 207 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℕ0)
136 1nn0 11305 . . . . . . . . . . . . . 14 1 ∈ ℕ0
137136a1i 11 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 1 ∈ ℕ0)
138135, 137nn0addcld 11352 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℕ0)
139 elnn0uz 11722 . . . . . . . . . . . 12 (((𝑁𝑆) + 1) ∈ ℕ0 ↔ ((𝑁𝑆) + 1) ∈ (ℤ‘0))
140138, 139sylib 208 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
141 fzoss1 12491 . . . . . . . . . . 11 (((𝑁𝑆) + 1) ∈ (ℤ‘0) → (((𝑁𝑆) + 1)..^𝑁) ⊆ (0..^𝑁))
1422, 140, 1413syl 18 . . . . . . . . . 10 (𝜑 → (((𝑁𝑆) + 1)..^𝑁) ⊆ (0..^𝑁))
143142sselda 3601 . . . . . . . . 9 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑗 ∈ (0..^𝑁))
144 crctcshwlkn0lem.n . . . . . . . . . 10 𝑁 = (#‘𝐹)
145144oveq2i 6658 . . . . . . . . 9 (0..^𝑁) = (0..^(#‘𝐹))
146143, 145syl6eleq 2710 . . . . . . . 8 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → 𝑗 ∈ (0..^(#‘𝐹)))
147 cshwidxmod 13543 . . . . . . . 8 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
148122, 124, 146, 147syl3anc 1325 . . . . . . 7 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
149144eqcomi 2630 . . . . . . . . . 10 (#‘𝐹) = 𝑁
150149oveq2i 6658 . . . . . . . . 9 ((𝑗 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod 𝑁)
151 eluzelre 11695 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) → 𝑗 ∈ ℝ)
1521513ad2ant1 1081 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁) → 𝑗 ∈ ℝ)
153152adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → 𝑗 ∈ ℝ)
154273ad2ant1 1081 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑆 ∈ ℝ)
155154adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → 𝑆 ∈ ℝ)
156153, 155readdcld 10066 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → (𝑗 + 𝑆) ∈ ℝ)
157 nnrp 11839 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1581573ad2ant2 1082 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℝ+)
159158adantr 481 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → 𝑁 ∈ ℝ+)
16050impcom 446 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → 𝑁 ≤ (𝑗 + 𝑆))
161159rpred 11869 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → 𝑁 ∈ ℝ)
162 simpr3 1068 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → 𝑗 < 𝑁)
163 simpl3 1065 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → 𝑆 < 𝑁)
164153, 155, 161, 162, 163lt2addmuld 11279 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → (𝑗 + 𝑆) < (2 · 𝑁))
165160, 164jca 554 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁)))
166156, 159, 165jca31 557 . . . . . . . . . . . . . . 15 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ (𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁)) → (((𝑗 + 𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁))))
167166ex 450 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑗 ∈ (ℤ‘((𝑁𝑆) + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑗 < 𝑁) → (((𝑗 + 𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁)))))
16824, 167syl5bi 232 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → (((𝑗 + 𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁)))))
16915, 168sylbi 207 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → (((𝑗 + 𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁)))))
1702, 169syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁) → (((𝑗 + 𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁)))))
171170imp 445 . . . . . . . . . 10 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (((𝑗 + 𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁))))
172 2submod 12726 . . . . . . . . . 10 ((((𝑗 + 𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝑁 ≤ (𝑗 + 𝑆) ∧ (𝑗 + 𝑆) < (2 · 𝑁))) → ((𝑗 + 𝑆) mod 𝑁) = ((𝑗 + 𝑆) − 𝑁))
173171, 172syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → ((𝑗 + 𝑆) mod 𝑁) = ((𝑗 + 𝑆) − 𝑁))
174150, 173syl5eq 2667 . . . . . . . 8 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → ((𝑗 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) − 𝑁))
175174fveq2d 6193 . . . . . . 7 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) − 𝑁)))
176148, 175eqtrd 2655 . . . . . 6 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) − 𝑁)))
177120, 176syl5eq 2667 . . . . 5 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (𝐻𝑗) = (𝐹‘((𝑗 + 𝑆) − 𝑁)))
178177fveq2d 6193 . . . 4 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))
179 simp1 1060 . . . . . 6 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → (𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)))
180 simp2 1061 . . . . . 6 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)))
181179, 180eqeq12d 2636 . . . . 5 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → ((𝑄𝑗) = (𝑄‘(𝑗 + 1)) ↔ (𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))))
182 simp3 1062 . . . . . 6 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))
183179sneqd 4187 . . . . . 6 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → {(𝑄𝑗)} = {(𝑃‘((𝑗 + 𝑆) − 𝑁))})
184182, 183eqeq12d 2636 . . . . 5 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → ((𝐼‘(𝐻𝑗)) = {(𝑄𝑗)} ↔ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}))
185179, 180preq12d 4274 . . . . . 6 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → {(𝑄𝑗), (𝑄‘(𝑗 + 1))} = {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))})
186185, 182sseq12d 3632 . . . . 5 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → ({(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)) ↔ {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))))
187181, 184, 186ifpbi123d 1027 . . . 4 (((𝑄𝑗) = (𝑃‘((𝑗 + 𝑆) − 𝑁)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁)))) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))))
188115, 118, 178, 187syl3anc 1325 . . 3 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑃‘((𝑗 + 𝑆) − 𝑁)) = (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁)), (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))) = {(𝑃‘((𝑗 + 𝑆) − 𝑁))}, {(𝑃‘((𝑗 + 𝑆) − 𝑁)), (𝑃‘(((𝑗 + 1) + 𝑆) − 𝑁))} ⊆ (𝐼‘(𝐹‘((𝑗 + 𝑆) − 𝑁))))))
189111, 188mpbird 247 . 2 ((𝜑𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)) → if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
190189ralrimiva 2965 1 (𝜑 → ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  if-wif 1012   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989  ∀wral 2911   ⊆ wss 3572  ifcif 4084  {csn 4175  {cpr 4177   class class class wbr 4651   ↦ cmpt 4727  ‘cfv 5886  (class class class)co 6647  ℂcc 9931  ℝcr 9932  0cc0 9933  1c1 9934   + caddc 9936   · cmul 9938   < clt 10071   ≤ cle 10072   − cmin 10263  ℕcn 11017  2c2 11067  ℕ0cn0 11289  ℤcz 11374  ℤ≥cuz 11684  ℝ+crp 11829  ...cfz 12323  ..^cfzo 12461   mod cmo 12663  #chash 13112  Word cword 13286   cyclShift ccsh 13528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-inf 8346  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-n0 11290  df-z 11375  df-uz 11685  df-rp 11830  df-fz 12324  df-fzo 12462  df-fl 12588  df-mod 12664  df-hash 13113  df-word 13294  df-concat 13296  df-substr 13298  df-csh 13529 This theorem is referenced by:  crctcshwlkn0lem7  26702
 Copyright terms: Public domain W3C validator