MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplit Structured version   Visualization version   GIF version

Theorem fprodsplit 14481
Description: Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fprodsplit.2 (𝜑𝑈 = (𝐴𝐵))
fprodsplit.3 (𝜑𝑈 ∈ Fin)
fprodsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplit (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fprodsplit
StepHypRef Expression
1 iftrue 4041 . . . . 5 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 1) = 𝐶)
21prodeq2i 14434 . . . 4 𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝐴 𝐶
3 ssun1 3737 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 fprodsplit.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4syl5sseqr 3616 . . . . 5 (𝜑𝐴𝑈)
61adantl 480 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) = 𝐶)
75sselda 3567 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑈)
8 fprodsplit.4 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
97, 8syldan 485 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
106, 9eqeltrd 2687 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
11 eldifn 3694 . . . . . . 7 (𝑘 ∈ (𝑈𝐴) → ¬ 𝑘𝐴)
1211iffalsed 4046 . . . . . 6 (𝑘 ∈ (𝑈𝐴) → if(𝑘𝐴, 𝐶, 1) = 1)
1312adantl 480 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐴)) → if(𝑘𝐴, 𝐶, 1) = 1)
14 fprodsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
155, 10, 13, 14fprodss 14463 . . . 4 (𝜑 → ∏𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
162, 15syl5eqr 2657 . . 3 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
17 iftrue 4041 . . . . 5 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 1) = 𝐶)
1817prodeq2i 14434 . . . 4 𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝐵 𝐶
19 ssun2 3738 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2019, 4syl5sseqr 3616 . . . . 5 (𝜑𝐵𝑈)
2117adantl 480 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) = 𝐶)
2220sselda 3567 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑘𝑈)
2322, 8syldan 485 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2421, 23eqeltrd 2687 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
25 eldifn 3694 . . . . . . 7 (𝑘 ∈ (𝑈𝐵) → ¬ 𝑘𝐵)
2625iffalsed 4046 . . . . . 6 (𝑘 ∈ (𝑈𝐵) → if(𝑘𝐵, 𝐶, 1) = 1)
2726adantl 480 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐵)) → if(𝑘𝐵, 𝐶, 1) = 1)
2820, 24, 27, 14fprodss 14463 . . . 4 (𝜑 → ∏𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
2918, 28syl5eqr 2657 . . 3 (𝜑 → ∏𝑘𝐵 𝐶 = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
3016, 29oveq12d 6545 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
31 ax-1cn 9850 . . . 4 1 ∈ ℂ
32 ifcl 4079 . . . 4 ((𝐶 ∈ ℂ ∧ 1 ∈ ℂ) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
338, 31, 32sylancl 692 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
34 ifcl 4079 . . . 4 ((𝐶 ∈ ℂ ∧ 1 ∈ ℂ) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
358, 31, 34sylancl 692 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
3614, 33, 35fprodmul 14475 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
374eleq2d 2672 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
38 elun 3714 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
3937, 38syl6bb 274 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
4039biimpa 499 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
41 fprodsplit.1 . . . . . . . . 9 (𝜑 → (𝐴𝐵) = ∅)
42 disjel 3974 . . . . . . . . 9 (((𝐴𝐵) = ∅ ∧ 𝑘𝐴) → ¬ 𝑘𝐵)
4341, 42sylan 486 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4443iffalsed 4046 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 1) = 1)
456, 44oveq12d 6545 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (𝐶 · 1))
469mulid1d 9913 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 · 1) = 𝐶)
4745, 46eqtrd 2643 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
4843ex 448 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4948con2d 127 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
5049imp 443 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
5150iffalsed 4046 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = 1)
5251, 21oveq12d 6545 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (1 · 𝐶))
5323mulid2d 9914 . . . . . 6 ((𝜑𝑘𝐵) → (1 · 𝐶) = 𝐶)
5452, 53eqtrd 2643 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
5547, 54jaodan 821 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
5640, 55syldan 485 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
5756prodeq2dv 14438 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = ∏𝑘𝑈 𝐶)
5830, 36, 573eqtr2rd 2650 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382   = wceq 1474  wcel 1976  cdif 3536  cun 3537  cin 3538  c0 3873  ifcif 4035  (class class class)co 6527  Fincfn 7818  cc 9790  1c1 9793   · cmul 9797  cprod 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-prod 14421
This theorem is referenced by:  fprodm1  14482  fprod1p  14483  fprodeq0  14490  fprod2dlem  14495  fprodsplitf  14504  fallfacval4  14559  fprodfvdvdsd  14842  prmdvdsprmo  15530  gausslemma2dlem4  24811  gausslemma2dlem6  24814
  Copyright terms: Public domain W3C validator