MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq Structured version   Visualization version   GIF version

Theorem itg2i1fseq 23567
Description: Subject to the conditions coming from mbfi1fseq 23533, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
Assertion
Ref Expression
itg2i1fseq (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃𝑛) = (𝑃𝑚))
21fveq1d 6231 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑚)‘𝑥))
32cbvmptv 4783 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥))
4 fveq2 6229 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑚)‘𝑥) = ((𝑃𝑚)‘𝑦))
54mpteq2dv 4778 . . . . . . 7 (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
63, 5syl5eq 2697 . . . . . 6 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
76rneqd 5385 . . . . 5 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
87supeq1d 8393 . . . 4 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
98cbvmptv 4783 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
10 itg2i1fseq.3 . . . . 5 (𝜑𝑃:ℕ⟶dom ∫1)
1110ffvelrnda 6399 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
12 i1fmbf 23487 . . . 4 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚) ∈ MblFn)
1311, 12syl 17 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ MblFn)
14 i1ff 23488 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚):ℝ⟶ℝ)
1511, 14syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶ℝ)
16 itg2i1fseq.4 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
171breq2d 4697 . . . . . . . 8 (𝑛 = 𝑚 → (0𝑝𝑟 ≤ (𝑃𝑛) ↔ 0𝑝𝑟 ≤ (𝑃𝑚)))
18 oveq1 6697 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
1918fveq2d 6233 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1)))
201, 19breq12d 4698 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1))))
2117, 20anbi12d 747 . . . . . . 7 (𝑛 = 𝑚 → ((0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝𝑟 ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1)))))
2221rspccva 3339 . . . . . 6 ((∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) → (0𝑝𝑟 ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1))))
2316, 22sylan 487 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (0𝑝𝑟 ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1))))
2423simpld 474 . . . 4 ((𝜑𝑚 ∈ ℕ) → 0𝑝𝑟 ≤ (𝑃𝑚))
25 0plef 23484 . . . 4 ((𝑃𝑚):ℝ⟶(0[,)+∞) ↔ ((𝑃𝑚):ℝ⟶ℝ ∧ 0𝑝𝑟 ≤ (𝑃𝑚)))
2615, 24, 25sylanbrc 699 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶(0[,)+∞))
2723simprd 478 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1)))
28 rge0ssre 12318 . . . . 5 (0[,)+∞) ⊆ ℝ
29 itg2i1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
3029ffvelrnda 6399 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
3128, 30sseldi 3634 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
32 itg2i1fseq.1 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
33 itg2i1fseq.5 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
3432, 29, 10, 16, 33itg2i1fseqle 23566 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘𝑟𝐹)
35 ffn 6083 . . . . . . . . . 10 ((𝑃𝑚):ℝ⟶ℝ → (𝑃𝑚) Fn ℝ)
3615, 35syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) Fn ℝ)
37 ffn 6083 . . . . . . . . . . 11 (𝐹:ℝ⟶(0[,)+∞) → 𝐹 Fn ℝ)
3829, 37syl 17 . . . . . . . . . 10 (𝜑𝐹 Fn ℝ)
3938adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
40 reex 10065 . . . . . . . . . 10 ℝ ∈ V
4140a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
42 inidm 3855 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
43 eqidd 2652 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) = ((𝑃𝑚)‘𝑦))
44 eqidd 2652 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
4536, 39, 41, 41, 42, 43, 44ofrfval 6947 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘𝑟𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)))
4634, 45mpbid 222 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4746r19.21bi 2961 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4847an32s 863 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4948ralrimiva 2995 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
50 breq2 4689 . . . . . 6 (𝑧 = (𝐹𝑦) → (((𝑃𝑚)‘𝑦) ≤ 𝑧 ↔ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)))
5150ralbidv 3015 . . . . 5 (𝑧 = (𝐹𝑦) → (∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)))
5251rspcev 3340 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
5331, 49, 52syl2anc 694 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
541fveq2d 6233 . . . . . 6 (𝑛 = 𝑚 → (∫2‘(𝑃𝑛)) = (∫2‘(𝑃𝑚)))
5554cbvmptv 4783 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5655rneqi 5384 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5756supeq1i 8394 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))), ℝ*, < )
589, 13, 26, 27, 53, 57itg2mono 23565 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
5929feqmptd 6288 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
601fveq1d 6231 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑚)‘𝑦))
6160cbvmptv 4783 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
6261rneqi 5384 . . . . . . . 8 ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
6362supeq1i 8394 . . . . . . 7 sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )
64 nnuz 11761 . . . . . . . . 9 ℕ = (ℤ‘1)
65 1zzd 11446 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
6615ffvelrnda 6399 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6766an32s 863 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6867, 61fmptd 6425 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)):ℕ⟶ℝ)
69 peano2nn 11070 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
70 ffvelrn 6397 . . . . . . . . . . . . . . . . 17 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑚 + 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
7110, 69, 70syl2an 493 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
72 i1ff 23488 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
7371, 72syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
74 ffn 6083 . . . . . . . . . . . . . . 15 ((𝑃‘(𝑚 + 1)):ℝ⟶ℝ → (𝑃‘(𝑚 + 1)) Fn ℝ)
7573, 74syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ)
76 eqidd 2652 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
7736, 75, 41, 41, 42, 43, 76ofrfval 6947 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)))
7827, 77mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7978r19.21bi 2961 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
8079an32s 863 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
81 eqid 2651 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
82 fvex 6239 . . . . . . . . . . . 12 ((𝑃𝑚)‘𝑦) ∈ V
8360, 81, 82fvmpt 6321 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
8483adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
85 fveq2 6229 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑃𝑛) = (𝑃‘(𝑚 + 1)))
8685fveq1d 6231 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
87 fvex 6239 . . . . . . . . . . . . 13 ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V
8886, 81, 87fvmpt 6321 . . . . . . . . . . . 12 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8969, 88syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
9089adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
9180, 84, 903brtr4d 4717 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)))
9283breq1d 4695 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃𝑚)‘𝑦) ≤ 𝑧))
9392ralbiia 3008 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
9493rexbii 3070 . . . . . . . . . 10 (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
9553, 94sylibr 224 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧)
9664, 65, 68, 91, 95climsup 14444 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ))
97 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
9897mpteq2dv 4778 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
99 fveq2 6229 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
10098, 99breq12d 4698 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
101100rspccva 3339 . . . . . . . . 9 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
10233, 101sylan 487 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
103 climuni 14327 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
10496, 102, 103syl2anc 694 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
10563, 104syl5eqr 2699 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ) = (𝐹𝑦))
106105mpteq2dva 4777 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
10759, 106eqtr4d 2688 . . . 4 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )))
108107, 9syl6eqr 2703 . . 3 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )))
109108fveq2d 6233 . 2 (𝜑 → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))))
110 itg2itg1 23548 . . . . . . . 8 (((𝑃𝑚) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑃𝑚)) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
11111, 24, 110syl2anc 694 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
112111mpteq2dva 4777 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚))))
113 itg2i1fseq.6 . . . . . 6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
114112, 113syl6reqr 2704 . . . . 5 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))))
115114, 55syl6eqr 2703 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
116115rneqd 5385 . . 3 (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
117116supeq1d 8393 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
11858, 109, 1173eqtr4d 2695 1 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑟 cofr 6938  supcsup 8387  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cn 11058  [,)cico 12215  cli 14259  MblFncmbf 23428  1citg1 23429  2citg2 23430  0𝑝c0p 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-0p 23482
This theorem is referenced by:  itg2i1fseq2  23568
  Copyright terms: Public domain W3C validator