MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climuni Structured version   Visualization version   GIF version

Theorem climuni 14482
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)

Proof of Theorem climuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 11599 . 2 1 ∈ ℤ
2 nnuz 11916 . . . . . . 7 ℕ = (ℤ‘1)
3 1zzd 11600 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 1 ∈ ℤ)
4 climcl 14429 . . . . . . . . . . 11 (𝐹𝐴𝐴 ∈ ℂ)
543ad2ant1 1128 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴 ∈ ℂ)
6 climcl 14429 . . . . . . . . . . 11 (𝐹𝐵𝐵 ∈ ℂ)
763ad2ant2 1129 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐵 ∈ ℂ)
85, 7subcld 10584 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ∈ ℂ)
9 simp3 1133 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴𝐵)
105, 7, 9subne0d 10593 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ≠ 0)
118, 10absrpcld 14386 . . . . . . . 8 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (abs‘(𝐴𝐵)) ∈ ℝ+)
1211rphalfcld 12077 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ((abs‘(𝐴𝐵)) / 2) ∈ ℝ+)
13 eqidd 2761 . . . . . . 7 (((𝐹𝐴𝐹𝐵𝐴𝐵) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
14 simp1 1131 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐴)
152, 3, 12, 13, 14climi 14440 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)))
16 simp2 1132 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐵)
172, 3, 12, 13, 16climi 14440 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))
182rexanuz2 14288 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
1915, 17, 18sylanbrc 701 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
20 nnz 11591 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
21 uzid 11894 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
22 ne0i 4064 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
23 r19.2z 4204 . . . . . . . . . 10 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
2423ex 449 . . . . . . . . 9 ((ℤ𝑗) ≠ ∅ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
2520, 21, 22, 244syl 19 . . . . . . . 8 (𝑗 ∈ ℕ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
26 simpr 479 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
27 simpll 807 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐴 ∈ ℂ)
2826, 27abssubd 14391 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐴 − (𝐹𝑘))))
2928breq1d 4814 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) ↔ (abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2)))
30 simplr 809 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐵 ∈ ℂ)
31 subcl 10472 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3231adantr 472 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3332abscld 14374 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
34 abs3lem 14277 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐴𝐵)) ∈ ℝ)) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3527, 30, 26, 33, 34syl22anc 1478 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3633ltnrd 10363 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ¬ (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)))
3736pm2.21d 118 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)) → ¬ 1 ∈ ℤ))
3835, 37syld 47 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
3938expd 451 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4029, 39sylbid 230 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4140impr 650 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ))
4241adantld 484 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
4342expimpd 630 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4443rexlimdvw 3172 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4525, 44sylan9r 693 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4645rexlimdva 3169 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
475, 7, 46syl2anc 696 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4819, 47mpd 15 . . . 4 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ¬ 1 ∈ ℤ)
49483expia 1115 . . 3 ((𝐹𝐴𝐹𝐵) → (𝐴𝐵 → ¬ 1 ∈ ℤ))
5049necon4ad 2951 . 2 ((𝐹𝐴𝐹𝐵) → (1 ∈ ℤ → 𝐴 = 𝐵))
511, 50mpi 20 1 ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  c0 4058   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  1c1 10129   < clt 10266  cmin 10458   / cdiv 10876  cn 11212  2c2 11262  cz 11569  cuz 11879  abscabs 14173  cli 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418
This theorem is referenced by:  fclim  14483  climeu  14485  summolem2  14646  summo  14647  prodmolem2  14864  prodmo  14865  ef0  15020  efcj  15021  efaddlem  15022  ioombl1lem4  23529  mbflimlem  23633  itg2i1fseq  23721  itg2addlem  23724  plyeq0lem  24165  ulmuni  24345  leibpi  24868  lgamp1  24982  lgam1  24989  sumnnodd  40365  climfveq  40404  climfveqf  40415  climfv  40426  climlimsupcex  40504  climliminflimsupd  40536  stirlinglem15  40808  fouriersw  40951  sge0isum  41147  vonioolem2  41401  vonicclem2  41404
  Copyright terms: Public domain W3C validator