MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgconst Structured version   Visualization version   GIF version

Theorem itgconst 23308
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
itgconst ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itgconst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recl 13644 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
213ad2ant3 1076 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
3 simplr 787 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
4 fconstmpt 5075 . . . . . . . . 9 (𝐴 × {𝑦}) = (𝑥𝐴𝑦)
5 simpl1 1056 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
6 simp2 1054 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (vol‘𝐴) ∈ ℝ)
76adantr 479 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
8 simpr 475 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
98recnd 9924 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
10 iblconst 23307 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝑦 ∈ ℂ) → (𝐴 × {𝑦}) ∈ 𝐿1)
115, 7, 9, 10syl3anc 1317 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝐴 × {𝑦}) ∈ 𝐿1)
124, 11syl5eqelr 2692 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝑥𝐴𝑦) ∈ 𝐿1)
133, 12itgrevallem1 23284 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ∫𝐴𝑦 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))))
14 ifan 4083 . . . . . . . . . . . 12 if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)
1514mpteq2i 4663 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))
1615fveq2i 6091 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)))
17 0re 9896 . . . . . . . . . . . . 13 0 ∈ ℝ
18 ifcl 4079 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
198, 17, 18sylancl 692 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
20 max1 11849 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
2117, 8, 20sylancr 693 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
22 elrege0 12105 . . . . . . . . . . . 12 (if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)))
2319, 21, 22sylanbrc 694 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞))
24 itg2const 23230 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
255, 7, 23, 24syl3anc 1317 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
2616, 25syl5eq 2655 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
27 ifan 4083 . . . . . . . . . . . 12 if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0) = if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)
2827mpteq2i 4663 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))
2928fveq2i 6091 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)))
30 renegcl 10195 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3130adantl 480 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
32 ifcl 4079 . . . . . . . . . . . . 13 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ)
3331, 17, 32sylancl 692 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ)
34 max1 11849 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0))
3517, 31, 34sylancr 693 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0))
36 elrege0 12105 . . . . . . . . . . . 12 (if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -𝑦, -𝑦, 0)))
3733, 35, 36sylanbrc 694 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞))
38 itg2const 23230 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
395, 7, 37, 38syl3anc 1317 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
4029, 39syl5eq 2655 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
4126, 40oveq12d 6545 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))))
4219recnd 9924 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℂ)
4333recnd 9924 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℂ)
446recnd 9924 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (vol‘𝐴) ∈ ℂ)
4544adantr 479 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (vol‘𝐴) ∈ ℂ)
4642, 43, 45subdird 10337 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))))
47 max0sub 11860 . . . . . . . . . 10 (𝑦 ∈ ℝ → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦)
4847adantl 480 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦)
4948oveq1d 6542 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = (𝑦 · (vol‘𝐴)))
5041, 46, 493eqtr2rd 2650 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝑦 · (vol‘𝐴)) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))))
5113, 50eqtr4d 2646 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)))
5251ralrimiva 2948 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)))
53 simpl 471 . . . . . . . 8 ((𝑦 = (ℜ‘𝐵) ∧ 𝑥𝐴) → 𝑦 = (ℜ‘𝐵))
5453itgeq2dv 23271 . . . . . . 7 (𝑦 = (ℜ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℜ‘𝐵) d𝑥)
55 oveq1 6534 . . . . . . 7 (𝑦 = (ℜ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℜ‘𝐵) · (vol‘𝐴)))
5654, 55eqeq12d 2624 . . . . . 6 (𝑦 = (ℜ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴))))
5756rspcv 3277 . . . . 5 ((ℜ‘𝐵) ∈ ℝ → (∀𝑦 ∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) → ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴))))
582, 52, 57sylc 62 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴)))
59 imcl 13645 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
60593ad2ant3 1076 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
61 simpl 471 . . . . . . . . . 10 ((𝑦 = (ℑ‘𝐵) ∧ 𝑥𝐴) → 𝑦 = (ℑ‘𝐵))
6261itgeq2dv 23271 . . . . . . . . 9 (𝑦 = (ℑ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℑ‘𝐵) d𝑥)
63 oveq1 6534 . . . . . . . . 9 (𝑦 = (ℑ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℑ‘𝐵) · (vol‘𝐴)))
6462, 63eqeq12d 2624 . . . . . . . 8 (𝑦 = (ℑ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴))))
6564rspcv 3277 . . . . . . 7 ((ℑ‘𝐵) ∈ ℝ → (∀𝑦 ∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) → ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴))))
6660, 52, 65sylc 62 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴)))
6766oveq2d 6543 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ((ℑ‘𝐵) · (vol‘𝐴))))
68 ax-icn 9851 . . . . . . 7 i ∈ ℂ
6968a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
7060recnd 9924 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
7169, 70, 44mulassd 9919 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐵)) · (vol‘𝐴)) = (i · ((ℑ‘𝐵) · (vol‘𝐴))))
7267, 71eqtr4d 2646 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = ((i · (ℑ‘𝐵)) · (vol‘𝐴)))
7358, 72oveq12d 6545 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴))))
742recnd 9924 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
75 mulcl 9876 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
7668, 70, 75sylancr 693 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
7774, 76, 44adddird 9921 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴))))
7873, 77eqtr4d 2646 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)))
79 simpl3 1058 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
80 fconstmpt 5075 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
81 iblconst 23307 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1)
8280, 81syl5eqelr 2692 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝐿1)
8379, 82itgcnval 23289 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
84 replim 13650 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
85843ad2ant3 1076 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
8685oveq1d 6542 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐵 · (vol‘𝐴)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)))
8778, 83, 863eqtr4d 2653 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  ifcif 4035  {csn 4124   class class class wbr 4577  cmpt 4637   × cxp 5026  dom cdm 5028  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  ici 9794   + caddc 9795   · cmul 9797  +∞cpnf 9927  cle 9931  cmin 10117  -cneg 10118  [,)cico 12004  cre 13631  cim 13632  volcvol 22956  2citg2 23108  𝐿1cibl 23109  citg 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-ofr 6773  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-xadd 11779  df-ioo 12006  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-xmet 19506  df-met 19507  df-ovol 22957  df-vol 22958  df-mbf 23111  df-itg1 23112  df-itg2 23113  df-ibl 23114  df-itg 23115  df-0p 23160
This theorem is referenced by:  ftc1lem4  23523  itgulm  23883  ftc1cnnclem  32456  arearect  36623  areaquad  36624  wallispilem2  38763  fourierdlem87  38890  sqwvfoura  38925  etransclem23  38954
  Copyright terms: Public domain W3C validator