MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgconst Structured version   Visualization version   GIF version

Theorem itgconst 23630
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
itgconst ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itgconst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recl 13894 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
213ad2ant3 1104 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
3 simplr 807 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
4 fconstmpt 5197 . . . . . . . . 9 (𝐴 × {𝑦}) = (𝑥𝐴𝑦)
5 simpl1 1084 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
6 simp2 1082 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (vol‘𝐴) ∈ ℝ)
76adantr 480 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
8 simpr 476 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
98recnd 10106 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
10 iblconst 23629 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝑦 ∈ ℂ) → (𝐴 × {𝑦}) ∈ 𝐿1)
115, 7, 9, 10syl3anc 1366 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝐴 × {𝑦}) ∈ 𝐿1)
124, 11syl5eqelr 2735 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝑥𝐴𝑦) ∈ 𝐿1)
133, 12itgrevallem1 23606 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ∫𝐴𝑦 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))))
14 ifan 4167 . . . . . . . . . . . 12 if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)
1514mpteq2i 4774 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))
1615fveq2i 6232 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)))
17 0re 10078 . . . . . . . . . . . . 13 0 ∈ ℝ
18 ifcl 4163 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
198, 17, 18sylancl 695 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
20 max1 12054 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
2117, 8, 20sylancr 696 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
22 elrege0 12316 . . . . . . . . . . . 12 (if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)))
2319, 21, 22sylanbrc 699 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞))
24 itg2const 23552 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
255, 7, 23, 24syl3anc 1366 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
2616, 25syl5eq 2697 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
27 ifan 4167 . . . . . . . . . . . 12 if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0) = if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)
2827mpteq2i 4774 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))
2928fveq2i 6232 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)))
30 renegcl 10382 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3130adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
32 ifcl 4163 . . . . . . . . . . . . 13 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ)
3331, 17, 32sylancl 695 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ)
34 max1 12054 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0))
3517, 31, 34sylancr 696 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0))
36 elrege0 12316 . . . . . . . . . . . 12 (if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -𝑦, -𝑦, 0)))
3733, 35, 36sylanbrc 699 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞))
38 itg2const 23552 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
395, 7, 37, 38syl3anc 1366 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
4029, 39syl5eq 2697 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
4126, 40oveq12d 6708 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))))
4219recnd 10106 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℂ)
4333recnd 10106 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℂ)
446recnd 10106 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (vol‘𝐴) ∈ ℂ)
4544adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (vol‘𝐴) ∈ ℂ)
4642, 43, 45subdird 10525 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))))
47 max0sub 12065 . . . . . . . . . 10 (𝑦 ∈ ℝ → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦)
4847adantl 481 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦)
4948oveq1d 6705 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = (𝑦 · (vol‘𝐴)))
5041, 46, 493eqtr2rd 2692 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝑦 · (vol‘𝐴)) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))))
5113, 50eqtr4d 2688 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)))
5251ralrimiva 2995 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)))
53 simpl 472 . . . . . . . 8 ((𝑦 = (ℜ‘𝐵) ∧ 𝑥𝐴) → 𝑦 = (ℜ‘𝐵))
5453itgeq2dv 23593 . . . . . . 7 (𝑦 = (ℜ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℜ‘𝐵) d𝑥)
55 oveq1 6697 . . . . . . 7 (𝑦 = (ℜ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℜ‘𝐵) · (vol‘𝐴)))
5654, 55eqeq12d 2666 . . . . . 6 (𝑦 = (ℜ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴))))
5756rspcv 3336 . . . . 5 ((ℜ‘𝐵) ∈ ℝ → (∀𝑦 ∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) → ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴))))
582, 52, 57sylc 65 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴)))
59 imcl 13895 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
60593ad2ant3 1104 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
61 simpl 472 . . . . . . . . . 10 ((𝑦 = (ℑ‘𝐵) ∧ 𝑥𝐴) → 𝑦 = (ℑ‘𝐵))
6261itgeq2dv 23593 . . . . . . . . 9 (𝑦 = (ℑ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℑ‘𝐵) d𝑥)
63 oveq1 6697 . . . . . . . . 9 (𝑦 = (ℑ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℑ‘𝐵) · (vol‘𝐴)))
6462, 63eqeq12d 2666 . . . . . . . 8 (𝑦 = (ℑ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴))))
6564rspcv 3336 . . . . . . 7 ((ℑ‘𝐵) ∈ ℝ → (∀𝑦 ∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) → ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴))))
6660, 52, 65sylc 65 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴)))
6766oveq2d 6706 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ((ℑ‘𝐵) · (vol‘𝐴))))
68 ax-icn 10033 . . . . . . 7 i ∈ ℂ
6968a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
7060recnd 10106 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
7169, 70, 44mulassd 10101 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐵)) · (vol‘𝐴)) = (i · ((ℑ‘𝐵) · (vol‘𝐴))))
7267, 71eqtr4d 2688 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = ((i · (ℑ‘𝐵)) · (vol‘𝐴)))
7358, 72oveq12d 6708 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴))))
742recnd 10106 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
75 mulcl 10058 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
7668, 70, 75sylancr 696 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
7774, 76, 44adddird 10103 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴))))
7873, 77eqtr4d 2688 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)))
79 simpl3 1086 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
80 fconstmpt 5197 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
81 iblconst 23629 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1)
8280, 81syl5eqelr 2735 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝐿1)
8379, 82itgcnval 23611 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
84 replim 13900 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
85843ad2ant3 1104 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
8685oveq1d 6705 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐵 · (vol‘𝐴)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)))
8778, 83, 863eqtr4d 2695 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  dom cdm 5143  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  ici 9976   + caddc 9977   · cmul 9979  +∞cpnf 10109  cle 10113  cmin 10304  -cneg 10305  [,)cico 12215  cre 13881  cim 13882  volcvol 23278  2citg2 23430  𝐿1cibl 23431  citg 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-xmet 19787  df-met 19788  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-ibl 23436  df-itg 23437  df-0p 23482
This theorem is referenced by:  ftc1lem4  23847  itgulm  24207  itgexpif  30812  ftc1cnnclem  33613  arearect  38118  areaquad  38119  wallispilem2  40601  fourierdlem87  40728  sqwvfoura  40763  etransclem23  40792
  Copyright terms: Public domain W3C validator