MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem1 Structured version   Visualization version   GIF version

Theorem log2ublem1 24718
Description: Lemma for log2ub 24721. The proof of log2ub 24721, which is simply the evaluation of log2tlbnd 24717 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem1.1 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
log2ublem1.2 𝐴 ∈ ℝ
log2ublem1.3 𝐷 ∈ ℕ0
log2ublem1.4 𝐸 ∈ ℕ
log2ublem1.5 𝐵 ∈ ℕ0
log2ublem1.6 𝐹 ∈ ℕ0
log2ublem1.7 𝐶 = (𝐴 + (𝐷 / 𝐸))
log2ublem1.8 (𝐵 + 𝐹) = 𝐺
log2ublem1.9 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
Assertion
Ref Expression
log2ublem1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺

Proof of Theorem log2ublem1
StepHypRef Expression
1 log2ublem1.1 . . 3 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
2 3nn 11224 . . . . . . . 8 3 ∈ ℕ
3 7nn0 11352 . . . . . . . 8 7 ∈ ℕ0
4 nnexpcl 12913 . . . . . . . 8 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
52, 3, 4mp2an 708 . . . . . . 7 (3↑7) ∈ ℕ
6 5nn 11226 . . . . . . . 8 5 ∈ ℕ
7 7nn 11228 . . . . . . . 8 7 ∈ ℕ
86, 7nnmulcli 11082 . . . . . . 7 (5 · 7) ∈ ℕ
95, 8nnmulcli 11082 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℕ
109nncni 11068 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℂ
11 log2ublem1.3 . . . . . 6 𝐷 ∈ ℕ0
1211nn0cni 11342 . . . . 5 𝐷 ∈ ℂ
13 log2ublem1.4 . . . . . 6 𝐸 ∈ ℕ
1413nncni 11068 . . . . 5 𝐸 ∈ ℂ
1513nnne0i 11093 . . . . 5 𝐸 ≠ 0
1610, 12, 14, 15divassi 10819 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))
17 log2ublem1.9 . . . . 5 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
18 3nn0 11348 . . . . . . . . . 10 3 ∈ ℕ0
1918, 3nn0expcli 12926 . . . . . . . . 9 (3↑7) ∈ ℕ0
20 5nn0 11350 . . . . . . . . . 10 5 ∈ ℕ0
2120, 3nn0mulcli 11369 . . . . . . . . 9 (5 · 7) ∈ ℕ0
2219, 21nn0mulcli 11369 . . . . . . . 8 ((3↑7) · (5 · 7)) ∈ ℕ0
2322, 11nn0mulcli 11369 . . . . . . 7 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0
2423nn0rei 11341 . . . . . 6 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ
25 log2ublem1.6 . . . . . . 7 𝐹 ∈ ℕ0
2625nn0rei 11341 . . . . . 6 𝐹 ∈ ℝ
2713nnrei 11067 . . . . . . 7 𝐸 ∈ ℝ
2813nngt0i 11092 . . . . . . 7 0 < 𝐸
2927, 28pm3.2i 470 . . . . . 6 (𝐸 ∈ ℝ ∧ 0 < 𝐸)
30 ledivmul 10937 . . . . . 6 (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)))
3124, 26, 29, 30mp3an 1464 . . . . 5 (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))
3217, 31mpbir 221 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹
3316, 32eqbrtrri 4708 . . 3 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹
349nnrei 11067 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℝ
35 log2ublem1.2 . . . . 5 𝐴 ∈ ℝ
3634, 35remulcli 10092 . . . 4 (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ
3711nn0rei 11341 . . . . . 6 𝐷 ∈ ℝ
38 nndivre 11094 . . . . . 6 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ)
3937, 13, 38mp2an 708 . . . . 5 (𝐷 / 𝐸) ∈ ℝ
4034, 39remulcli 10092 . . . 4 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ
41 log2ublem1.5 . . . . 5 𝐵 ∈ ℕ0
4241nn0rei 11341 . . . 4 𝐵 ∈ ℝ
4336, 40, 42, 26le2addi 10629 . . 3 (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹))
441, 33, 43mp2an 708 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)
45 log2ublem1.7 . . . 4 𝐶 = (𝐴 + (𝐷 / 𝐸))
4645oveq2i 6701 . . 3 (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸)))
4735recni 10090 . . . 4 𝐴 ∈ ℂ
4839recni 10090 . . . 4 (𝐷 / 𝐸) ∈ ℂ
4910, 47, 48adddii 10088 . . 3 (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)))
5046, 49eqtr2i 2674 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶)
51 log2ublem1.8 . 2 (𝐵 + 𝐹) = 𝐺
5244, 50, 513brtr3i 4714 1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974   + caddc 9977   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  cn 11058  3c3 11109  5c5 11111  7c7 11113  0cn0 11330  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901
This theorem is referenced by:  log2ublem2  24719  log2ub  24721
  Copyright terms: Public domain W3C validator