MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspindpi Structured version   Visualization version   GIF version

Theorem lspindpi 19064
Description: Partial independence property. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
lspindpi.v 𝑉 = (Base‘𝑊)
lspindpi.n 𝑁 = (LSpan‘𝑊)
lspindpi.w (𝜑𝑊 ∈ LVec)
lspindpi.x (𝜑𝑋𝑉)
lspindpi.y (𝜑𝑌𝑉)
lspindpi.z (𝜑𝑍𝑉)
lspindpi.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspindpi (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))

Proof of Theorem lspindpi
StepHypRef Expression
1 lspindpi.e . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspindpi.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
3 lveclmod 19038 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
5 eqid 2621 . . . . . . . . . . 11 (LSubSp‘𝑊) = (LSubSp‘𝑊)
65lsssssubg 18890 . . . . . . . . . 10 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
8 lspindpi.y . . . . . . . . . 10 (𝜑𝑌𝑉)
9 lspindpi.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
10 lspindpi.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
119, 5, 10lspsncl 18909 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
124, 8, 11syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
137, 12sseldd 3588 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
14 lspindpi.z . . . . . . . . . 10 (𝜑𝑍𝑉)
159, 5, 10lspsncl 18909 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
164, 14, 15syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
177, 16sseldd 3588 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
18 eqid 2621 . . . . . . . . 9 (LSSum‘𝑊) = (LSSum‘𝑊)
1918lsmub1 18003 . . . . . . . 8 (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2013, 17, 19syl2anc 692 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
219, 10, 18, 4, 8, 14lsmpr 19021 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2220, 21sseqtr4d 3626 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍}))
23 sseq1 3610 . . . . . 6 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍})))
2422, 23syl5ibrcom 237 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
259, 5, 10, 4, 8, 14lspprcl 18910 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
26 lspindpi.x . . . . . 6 (𝜑𝑋𝑉)
279, 5, 10, 4, 25, 26lspsnel5 18927 . . . . 5 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
2824, 27sylibrd 249 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})))
2928necon3bd 2804 . . 3 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})))
301, 29mpd 15 . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3118lsmub2 18004 . . . . . . . 8 (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3213, 17, 31syl2anc 692 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3332, 21sseqtr4d 3626 . . . . . 6 (𝜑 → (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍}))
34 sseq1 3610 . . . . . 6 ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍})))
3533, 34syl5ibrcom 237 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
3635, 27sylibrd 249 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})))
3736necon3bd 2804 . . 3 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
381, 37mpd 15 . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
3930, 38jca 554 1 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wss 3559  {csn 4153  {cpr 4155  cfv 5852  (class class class)co 6610  Basecbs 15792  SubGrpcsubg 17520  LSSumclsm 17981  LModclmod 18795  LSubSpclss 18864  LSpanclspn 18903  LVecclvec 19034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-cntz 17682  df-lsm 17983  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-lmod 18797  df-lss 18865  df-lsp 18904  df-lvec 19035
This theorem is referenced by:  lspindp1  19065  baerlem5amN  36520  baerlem5bmN  36521  baerlem5abmN  36522  mapdindp4  36527  mapdh6bN  36541  mapdh6cN  36542  mapdh6dN  36543  mapdh6eN  36544  mapdh6fN  36545  mapdh6hN  36547  mapdh7eN  36552  mapdh7dN  36554  mapdh7fN  36555  mapdh75fN  36559  mapdh8aa  36580  mapdh8ab  36581  mapdh8ad  36583  mapdh8c  36585  mapdh8d0N  36586  mapdh8d  36587  mapdh8e  36588  mapdh9a  36594  mapdh9aOLDN  36595  hdmap1eq4N  36611  hdmap1l6b  36616  hdmap1l6c  36617  hdmap1l6d  36618  hdmap1l6e  36619  hdmap1l6f  36620  hdmap1l6h  36622  hdmap1eulemOLDN  36629  hdmapval0  36640  hdmapval3lemN  36644  hdmap10lem  36646  hdmap11lem1  36648  hdmap14lem11  36685
  Copyright terms: Public domain W3C validator