Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrex Structured version   Visualization version   GIF version

Theorem pellqrex 39496
Description: There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellqrex (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Distinct variable group:   𝑥,𝐷

Proof of Theorem pellqrex
Dummy variables 𝑎 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4103 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2 eldifn 4104 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ 𝐷 ∈ ◻NN)
31anim1i 616 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
4 fveq2 6670 . . . . . . 7 (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷))
54eleq1d 2897 . . . . . 6 (𝑎 = 𝐷 → ((√‘𝑎) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
6 df-squarenn 39458 . . . . . 6 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
75, 6elrab2 3683 . . . . 5 (𝐷 ∈ ◻NN ↔ (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
83, 7sylibr 236 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → 𝐷 ∈ ◻NN)
92, 8mtand 814 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ (√‘𝐷) ∈ ℚ)
10 pellex 39452 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
111, 9, 10syl2anc 586 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
12 simpll 765 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝐷 ∈ (ℕ ∖ ◻NN))
13 nnnn0 11905 . . . . . . . 8 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
1413adantr 483 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑐 ∈ ℕ0)
1514ad2antlr 725 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑐 ∈ ℕ0)
16 nnnn0 11905 . . . . . . . 8 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
1716adantl 484 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
1817ad2antlr 725 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑑 ∈ ℕ0)
19 simpr 487 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
20 pellqrexplicit 39494 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
2112, 15, 18, 19, 20syl31anc 1369 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
22 1re 10641 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ∈ ℝ)
2422, 22readdcli 10656 . . . . . . . 8 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ∈ ℝ)
26 nnre 11645 . . . . . . . . 9 (𝑐 ∈ ℕ → 𝑐 ∈ ℝ)
2726ad2antrl 726 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑐 ∈ ℝ)
281adantr 483 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℕ)
2928nnrpd 12430 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℝ+)
3029rpsqrtcld 14771 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ+)
3130rpred 12432 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ)
32 nnre 11645 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
3332ad2antll 727 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑑 ∈ ℝ)
3431, 33remulcld 10671 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((√‘𝐷) · 𝑑) ∈ ℝ)
3527, 34readdcld 10670 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ ℝ)
3622ltp1i 11544 . . . . . . . 8 1 < (1 + 1)
3736a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (1 + 1))
38 nnge1 11666 . . . . . . . . 9 (𝑐 ∈ ℕ → 1 ≤ 𝑐)
3938ad2antrl 726 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑐)
40 1t1e1 11800 . . . . . . . . 9 (1 · 1) = 1
41 nnge1 11666 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ≤ 𝐷)
42 sq1 13559 . . . . . . . . . . . . . 14 (1↑2) = 1
4342a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (1↑2) = 1)
44 nncn 11646 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
4544sqsqrtd 14799 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → ((√‘𝐷)↑2) = 𝐷)
4641, 43, 453brtr4d 5098 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1↑2) ≤ ((√‘𝐷)↑2))
4722a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ∈ ℝ)
48 nnrp 12401 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
4948rpsqrtcld 14771 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ+)
5049rpred 12432 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ)
51 0le1 11163 . . . . . . . . . . . . . 14 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ 1)
5349rpge0d 12436 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ (√‘𝐷))
5447, 50, 52, 53le2sqd 13621 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1 ≤ (√‘𝐷) ↔ (1↑2) ≤ ((√‘𝐷)↑2)))
5546, 54mpbird 259 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 1 ≤ (√‘𝐷))
5628, 55syl 17 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ (√‘𝐷))
57 nnge1 11666 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
5857ad2antll 727 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑑)
5923, 51jctir 523 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 ≤ 1))
60 lemul12a 11498 . . . . . . . . . . 11 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (√‘𝐷) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑑 ∈ ℝ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6159, 31, 59, 33, 60syl22anc 836 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6256, 58, 61mp2and 697 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 · 1) ≤ ((√‘𝐷) · 𝑑))
6340, 62eqbrtrrid 5102 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ ((√‘𝐷) · 𝑑))
6423, 23, 27, 34, 39, 63le2addd 11259 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ≤ (𝑐 + ((√‘𝐷) · 𝑑)))
6523, 25, 35, 37, 64ltletrd 10800 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
6665adantr 483 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
67 breq2 5070 . . . . . 6 (𝑥 = (𝑐 + ((√‘𝐷) · 𝑑)) → (1 < 𝑥 ↔ 1 < (𝑐 + ((√‘𝐷) · 𝑑))))
6867rspcev 3623 . . . . 5 (((𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷) ∧ 1 < (𝑐 + ((√‘𝐷) · 𝑑))) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
6921, 66, 68syl2anc 586 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
7069ex 415 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7170rexlimdvva 3294 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7211, 71mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3139  cdif 3933   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  cn 11638  2c2 11693  0cn0 11898  cq 12349  cexp 13430  csqrt 14592  NNcsquarenn 39453  Pell1QRcpell1qr 39454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ico 12745  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-numer 16075  df-denom 16076  df-squarenn 39458  df-pell1qr 39459
This theorem is referenced by:  pellfundre  39498  pellfundge  39499  pellfundglb  39502
  Copyright terms: Public domain W3C validator