MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1rem Structured version   Visualization version   GIF version

Theorem ply1rem 24142
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15482). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.4 (𝜑𝐹𝐵)
ply1rem.e 𝐸 = (rem1p𝑅)
Assertion
Ref Expression
ply1rem (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))

Proof of Theorem ply1rem
StepHypRef Expression
1 ply1rem.1 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
2 nzrring 19483 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ply1rem.4 . . . . . . . 8 (𝜑𝐹𝐵)
5 ply1rem.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
6 ply1rem.b . . . . . . . . . . 11 𝐵 = (Base‘𝑃)
7 ply1rem.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
8 ply1rem.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
9 ply1rem.m . . . . . . . . . . 11 = (-g𝑃)
10 ply1rem.a . . . . . . . . . . 11 𝐴 = (algSc‘𝑃)
11 ply1rem.g . . . . . . . . . . 11 𝐺 = (𝑋 (𝐴𝑁))
12 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
13 ply1rem.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
14 ply1rem.3 . . . . . . . . . . 11 (𝜑𝑁𝐾)
15 eqid 2760 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
16 eqid 2760 . . . . . . . . . . 11 ( deg1𝑅) = ( deg1𝑅)
17 eqid 2760 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 24141 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (( deg1𝑅)‘𝐺) = 1 ∧ ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁}))
1918simp1d 1137 . . . . . . . . 9 (𝜑𝐺 ∈ (Monic1p𝑅))
20 eqid 2760 . . . . . . . . . 10 (Unic1p𝑅) = (Unic1p𝑅)
2120, 15mon1puc1p 24129 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
223, 19, 21syl2anc 696 . . . . . . . 8 (𝜑𝐺 ∈ (Unic1p𝑅))
23 ply1rem.e . . . . . . . . 9 𝐸 = (rem1p𝑅)
2423, 5, 6, 20, 16r1pdeglt 24137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (( deg1𝑅)‘(𝐹𝐸𝐺)) < (( deg1𝑅)‘𝐺))
253, 4, 22, 24syl3anc 1477 . . . . . . 7 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) < (( deg1𝑅)‘𝐺))
2618simp2d 1138 . . . . . . 7 (𝜑 → (( deg1𝑅)‘𝐺) = 1)
2725, 26breqtrd 4830 . . . . . 6 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) < 1)
28 1e0p1 11764 . . . . . 6 1 = (0 + 1)
2927, 28syl6breq 4845 . . . . 5 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))
30 0nn0 11519 . . . . . 6 0 ∈ ℕ0
31 nn0leltp1 11648 . . . . . 6 (((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (( deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3230, 31mpan2 709 . . . . 5 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (( deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3329, 32syl5ibrcom 237 . . . 4 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
34 elsni 4338 . . . . . 6 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → (( deg1𝑅)‘(𝐹𝐸𝐺)) = -∞)
35 0xr 10298 . . . . . . 7 0 ∈ ℝ*
36 mnfle 12182 . . . . . . 7 (0 ∈ ℝ* → -∞ ≤ 0)
3735, 36ax-mp 5 . . . . . 6 -∞ ≤ 0
3834, 37syl6eqbr 4843 . . . . 5 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
3938a1i 11 . . . 4 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
4023, 5, 6, 20r1pcl 24136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹𝐸𝐺) ∈ 𝐵)
413, 4, 22, 40syl3anc 1477 . . . . . 6 (𝜑 → (𝐹𝐸𝐺) ∈ 𝐵)
4216, 5, 6deg1cl 24062 . . . . . 6 ((𝐹𝐸𝐺) ∈ 𝐵 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
4341, 42syl 17 . . . . 5 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
44 elun 3896 . . . . 5 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4543, 44sylib 208 . . . 4 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4633, 39, 45mpjaod 395 . . 3 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
4716, 5, 6, 10deg1le0 24090 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝐸𝐺) ∈ 𝐵) → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
483, 41, 47syl2anc 696 . . 3 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
4946, 48mpbid 222 . 2 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
50 eqid 2760 . . . . . . . . 9 (quot1p𝑅) = (quot1p𝑅)
51 eqid 2760 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
52 eqid 2760 . . . . . . . . 9 (+g𝑃) = (+g𝑃)
535, 6, 20, 50, 23, 51, 52r1pid 24138 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → 𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
543, 4, 22, 53syl3anc 1477 . . . . . . 7 (𝜑𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
5554fveq2d 6357 . . . . . 6 (𝜑 → (𝑂𝐹) = (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))))
56 eqid 2760 . . . . . . . . . 10 (𝑅s 𝐾) = (𝑅s 𝐾)
5712, 5, 56, 7evl1rhm 19918 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
5813, 57syl 17 . . . . . . . 8 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
59 rhmghm 18947 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
6058, 59syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
615ply1ring 19840 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
623, 61syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
6350, 5, 6, 20q1pcl 24134 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
643, 4, 22, 63syl3anc 1477 . . . . . . . 8 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
655, 6, 15mon1pcl 24123 . . . . . . . . 9 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
6619, 65syl 17 . . . . . . . 8 (𝜑𝐺𝐵)
676, 51ringcl 18781 . . . . . . . 8 ((𝑃 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
6862, 64, 66, 67syl3anc 1477 . . . . . . 7 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
69 eqid 2760 . . . . . . . 8 (+g‘(𝑅s 𝐾)) = (+g‘(𝑅s 𝐾))
706, 52, 69ghmlin 17886 . . . . . . 7 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)) ∧ ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵 ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
7160, 68, 41, 70syl3anc 1477 . . . . . 6 (𝜑 → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
72 eqid 2760 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
73 fvex 6363 . . . . . . . . 9 (Base‘𝑅) ∈ V
747, 73eqeltri 2835 . . . . . . . 8 𝐾 ∈ V
7574a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
766, 72rhmf 18948 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7758, 76syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7877, 68ffvelrnd 6524 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
7977, 41ffvelrnd 6524 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) ∈ (Base‘(𝑅s 𝐾)))
80 eqid 2760 . . . . . . 7 (+g𝑅) = (+g𝑅)
8156, 72, 1, 75, 78, 79, 80, 69pwsplusgval 16372 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘𝑓 (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8255, 71, 813eqtrd 2798 . . . . 5 (𝜑 → (𝑂𝐹) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘𝑓 (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8382fveq1d 6355 . . . 4 (𝜑 → ((𝑂𝐹)‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘𝑓 (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁))
8456, 7, 72, 1, 75, 78pwselbas 16371 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)):𝐾𝐾)
85 ffn 6206 . . . . . . 7 ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)):𝐾𝐾 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾)
8684, 85syl 17 . . . . . 6 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾)
8756, 7, 72, 1, 75, 79pwselbas 16371 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)):𝐾𝐾)
88 ffn 6206 . . . . . . 7 ((𝑂‘(𝐹𝐸𝐺)):𝐾𝐾 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾)
8987, 88syl 17 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾)
90 fnfvof 7077 . . . . . 6 ((((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾 ∧ (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘𝑓 (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
9186, 89, 75, 14, 90syl22anc 1478 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘𝑓 (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
92 eqid 2760 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
936, 51, 92rhmmul 18949 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9458, 64, 66, 93syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9577, 64ffvelrnd 6524 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
9677, 66ffvelrnd 6524 . . . . . . . . . 10 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
97 eqid 2760 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
9856, 72, 1, 75, 95, 96, 97, 92pwsmulrval 16373 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘𝑓 (.r𝑅)(𝑂𝐺)))
9994, 98eqtrd 2794 . . . . . . . 8 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘𝑓 (.r𝑅)(𝑂𝐺)))
10099fveq1d 6355 . . . . . . 7 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘𝑓 (.r𝑅)(𝑂𝐺))‘𝑁))
10156, 7, 72, 1, 75, 95pwselbas 16371 . . . . . . . . 9 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
102 ffn 6206 . . . . . . . . 9 ((𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
103101, 102syl 17 . . . . . . . 8 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
10456, 7, 72, 1, 75, 96pwselbas 16371 . . . . . . . . 9 (𝜑 → (𝑂𝐺):𝐾𝐾)
105 ffn 6206 . . . . . . . . 9 ((𝑂𝐺):𝐾𝐾 → (𝑂𝐺) Fn 𝐾)
106104, 105syl 17 . . . . . . . 8 (𝜑 → (𝑂𝐺) Fn 𝐾)
107 fnfvof 7077 . . . . . . . 8 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘𝑓 (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
108103, 106, 75, 14, 107syl22anc 1478 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘𝑓 (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
109 snidg 4351 . . . . . . . . . . . . 13 (𝑁𝐾𝑁 ∈ {𝑁})
11014, 109syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ {𝑁})
11118simp3d 1139 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁})
112110, 111eleqtrrd 2842 . . . . . . . . . . 11 (𝜑𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}))
113 fniniseg 6502 . . . . . . . . . . . 12 ((𝑂𝐺) Fn 𝐾 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
114106, 113syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
115112, 114mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅)))
116115simprd 482 . . . . . . . . 9 (𝜑 → ((𝑂𝐺)‘𝑁) = (0g𝑅))
117116oveq2d 6830 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)))
118101, 14ffvelrnd 6524 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾)
1197, 97, 17ringrz 18808 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
1203, 118, 119syl2anc 696 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
121117, 120eqtrd 2794 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (0g𝑅))
122100, 108, 1213eqtrd 2798 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (0g𝑅))
123122oveq1d 6829 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
124 ringgrp 18772 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1253, 124syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
12687, 14ffvelrnd 6524 . . . . . 6 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾)
1277, 80, 17grplid 17673 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
128125, 126, 127syl2anc 696 . . . . 5 (𝜑 → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
12991, 123, 1283eqtrd 2798 . . . 4 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘𝑓 (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
13049fveq2d 6357 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
131 eqid 2760 . . . . . . . . . . 11 (coe1‘(𝐹𝐸𝐺)) = (coe1‘(𝐹𝐸𝐺))
132131, 6, 5, 7coe1f 19803 . . . . . . . . . 10 ((𝐹𝐸𝐺) ∈ 𝐵 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
13341, 132syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
134 ffvelrn 6521 . . . . . . . . 9 (((coe1‘(𝐹𝐸𝐺)):ℕ0𝐾 ∧ 0 ∈ ℕ0) → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
135133, 30, 134sylancl 697 . . . . . . . 8 (𝜑 → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
13612, 5, 7, 10evl1sca 19920 . . . . . . . 8 ((𝑅 ∈ CRing ∧ ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
13713, 135, 136syl2anc 696 . . . . . . 7 (𝜑 → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
138130, 137eqtrd 2794 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
139138fveq1d 6355 . . . . 5 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁))
140 fvex 6363 . . . . . . 7 ((coe1‘(𝐹𝐸𝐺))‘0) ∈ V
141140fvconst2 6634 . . . . . 6 (𝑁𝐾 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
14214, 141syl 17 . . . . 5 (𝜑 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
143139, 142eqtrd 2794 . . . 4 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
14483, 129, 1433eqtrd 2798 . . 3 (𝜑 → ((𝑂𝐹)‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
145144fveq2d 6357 . 2 (𝜑 → (𝐴‘((𝑂𝐹)‘𝑁)) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
14649, 145eqtr4d 2797 1 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cun 3713  {csn 4321   class class class wbr 4804   × cxp 5264  ccnv 5265  cima 5269   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  𝑓 cof 7061  0cc0 10148  1c1 10149   + caddc 10151  -∞cmnf 10284  *cxr 10285   < clt 10286  cle 10287  0cn0 11504  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  0gc0g 16322  s cpws 16329  Grpcgrp 17643  -gcsg 17645   GrpHom cghm 17878  Ringcrg 18767  CRingccrg 18768   RingHom crh 18934  NzRingcnzr 19479  algSccascl 19533  var1cv1 19768  Poly1cpl1 19769  coe1cco1 19770  eval1ce1 19901   deg1 cdg1 24033  Monic1pcmn1 24104  Unic1pcuc1p 24105  quot1pcq1p 24106  rem1pcr1p 24107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-0g 16324  df-gsum 16325  df-prds 16330  df-pws 16332  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-srg 18726  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-rnghom 18937  df-subrg 19000  df-lmod 19087  df-lss 19155  df-lsp 19194  df-nzr 19480  df-rlreg 19505  df-assa 19534  df-asp 19535  df-ascl 19536  df-psr 19578  df-mvr 19579  df-mpl 19580  df-opsr 19582  df-evls 19728  df-evl 19729  df-psr1 19772  df-vr1 19773  df-ply1 19774  df-coe1 19775  df-evl1 19903  df-cnfld 19969  df-mdeg 24034  df-deg1 24035  df-mon1 24109  df-uc1p 24110  df-q1p 24111  df-r1p 24112
This theorem is referenced by:  facth1  24143
  Copyright terms: Public domain W3C validator