HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdii Structured version   Visualization version   GIF version

Theorem sumdmdii 29604
Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdii ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)

Proof of Theorem sumdmdii
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 3951 . . . . . . 7 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
21adantr 472 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
3 elin 3939 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) ↔ (𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)))
4 sumdmdi.1 . . . . . . . . . . . 12 𝐴C
5 sumdmdi.2 . . . . . . . . . . . 12 𝐵C
64, 5chseli 28648 . . . . . . . . . . 11 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤))
7 ssel2 3739 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵𝑥𝑤𝐵) → 𝑤𝑥)
8 chsh 28411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥C𝑥S )
9 shsubcl 28407 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥S𝑦𝑥𝑤𝑥) → (𝑦 𝑤) ∈ 𝑥)
1093exp 1113 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥S → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
118, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
127, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑦𝑥 → ((𝐵𝑥𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)))
1312exp4a 634 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥C → (𝑦𝑥 → (𝐵𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1413com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥C → (𝐵𝑥 → (𝑦𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1514imp41 620 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1615adantlr 753 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1716adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑦 𝑤) ∈ 𝑥)
18 chel 28417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝑦𝑥) → 𝑦 ∈ ℋ)
1918adantlr 753 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ ℋ)
204cheli 28419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐴𝑧 ∈ ℋ)
215cheli 28419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ ℋ)
22 hvsubadd 28264 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧 ↔ (𝑤 + 𝑧) = 𝑦))
23 ax-hvcom 28188 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
2423eqeq1d 2762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦 ↔ (𝑧 + 𝑤) = 𝑦))
25 eqcom 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
2624, 25syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
27263adant1 1125 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
2822, 27bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
29283com23 1121 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
3019, 20, 21, 29syl3an 1164 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
31303expa 1112 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
32 eleq1 2827 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 𝑤) = 𝑧 → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3331, 32syl6bir 244 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 = (𝑧 + 𝑤) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥)))
3433imp 444 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3517, 34mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑧𝑥)
36 simpr 479 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑦 = (𝑧 + 𝑤))
3735, 36jca 555 . . . . . . . . . . . . . . . . 17 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))
3837exp31 631 . . . . . . . . . . . . . . . 16 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (𝑤𝐵 → (𝑦 = (𝑧 + 𝑤) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))))
3938reximdvai 3153 . . . . . . . . . . . . . . 15 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤))))
40 r19.42v 3230 . . . . . . . . . . . . . . 15 (∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
4139, 40syl6ib 241 . . . . . . . . . . . . . 14 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4241reximdva 3155 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
43 elin 3939 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝑥𝑧𝐴))
44 ancom 465 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑧𝐴) ↔ (𝑧𝐴𝑧𝑥))
4543, 44bitri 264 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝐴𝑧𝑥))
4645anbi1i 733 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ ((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
47 anass 684 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4846, 47bitri 264 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4948rexbii2 3177 . . . . . . . . . . . . 13 (∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) ↔ ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5042, 49syl6ibr 242 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
514chshii 28414 . . . . . . . . . . . . . . 15 𝐴S
52 shincl 28570 . . . . . . . . . . . . . . 15 ((𝑥S𝐴S ) → (𝑥𝐴) ∈ S )
538, 51, 52sylancl 697 . . . . . . . . . . . . . 14 (𝑥C → (𝑥𝐴) ∈ S )
5453ad2antrr 764 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑥𝐴) ∈ S )
555chshii 28414 . . . . . . . . . . . . 13 𝐵S
56 shsel 28503 . . . . . . . . . . . . 13 (((𝑥𝐴) ∈ S𝐵S ) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5754, 55, 56sylancl 697 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5850, 57sylibrd 249 . . . . . . . . . . 11 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
596, 58syl5bi 232 . . . . . . . . . 10 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6059expimpd 630 . . . . . . . . 9 ((𝑥C𝐵𝑥) → ((𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
613, 60syl5bi 232 . . . . . . . 8 ((𝑥C𝐵𝑥) → (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6261ssrdv 3750 . . . . . . 7 ((𝑥C𝐵𝑥) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
6362adantl 473 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
642, 63eqsstr3d 3781 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
65 chincl 28688 . . . . . . . 8 ((𝑥C𝐴C ) → (𝑥𝐴) ∈ C )
664, 65mpan2 709 . . . . . . 7 (𝑥C → (𝑥𝐴) ∈ C )
67 chslej 28687 . . . . . . 7 (((𝑥𝐴) ∈ C𝐵C ) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6866, 5, 67sylancl 697 . . . . . 6 (𝑥C → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6968ad2antrl 766 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
7064, 69sstrd 3754 . . . 4 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))
7170exp32 632 . . 3 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥C → (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
7271ralrimiv 3103 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) → ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
73 dmdbr2 29492 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
744, 5, 73mp2an 710 . 2 (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
7572, 74sylibr 224 1 ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cin 3714  wss 3715   class class class wbr 4804  (class class class)co 6814  chil 28106   + cva 28107   cmv 28112   S csh 28115   C cch 28116   + cph 28118   chj 28120   𝑀* cdmd 28154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cc 9469  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvmulass 28194  ax-hvdistr1 28195  ax-hvdistr2 28196  ax-hvmul0 28197  ax-hfi 28266  ax-his1 28269  ax-his2 28270  ax-his3 28271  ax-his4 28272  ax-hcompl 28389
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-omul 7735  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-cn 21253  df-cnp 21254  df-lm 21255  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cfil 23273  df-cau 23274  df-cmet 23275  df-grpo 27677  df-gid 27678  df-ginv 27679  df-gdiv 27680  df-ablo 27729  df-vc 27744  df-nv 27777  df-va 27780  df-ba 27781  df-sm 27782  df-0v 27783  df-vs 27784  df-nmcv 27785  df-ims 27786  df-dip 27886  df-ssp 27907  df-ph 27998  df-cbn 28049  df-hnorm 28155  df-hba 28156  df-hvsub 28158  df-hlim 28159  df-hcau 28160  df-sh 28394  df-ch 28408  df-oc 28439  df-ch0 28440  df-shs 28497  df-chj 28499  df-dmd 29470
This theorem is referenced by:  cmmdi  29605  sumdmdi  29609
  Copyright terms: Public domain W3C validator