MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfvallem1 Structured version   Visualization version   GIF version

Theorem taylfvallem1 24947
Description: Lemma for taylfval 24949. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
Assertion
Ref Expression
taylfvallem1 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem taylfvallem1
StepHypRef Expression
1 taylfval.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
21ad2antrr 724 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ})
3 cnex 10620 . . . . . . . 8 ℂ ∈ V
43a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
5 taylfval.f . . . . . . 7 (𝜑𝐹:𝐴⟶ℂ)
6 taylfval.a . . . . . . 7 (𝜑𝐴𝑆)
7 elpm2r 8426 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
84, 1, 5, 6, 7syl22anc 836 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
98ad2antrr 724 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
10 simpr 487 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
1110elin2d 4178 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ)
1210elin1d 4177 . . . . . . . 8 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁))
13 0xr 10690 . . . . . . . . 9 0 ∈ ℝ*
14 taylfval.n . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
15 nn0re 11909 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1615rexrd 10693 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
17 id 22 . . . . . . . . . . . . 13 (𝑁 = +∞ → 𝑁 = +∞)
18 pnfxr 10697 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1917, 18eqeltrdi 2923 . . . . . . . . . . . 12 (𝑁 = +∞ → 𝑁 ∈ ℝ*)
2016, 19jaoi 853 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑁 = +∞) → 𝑁 ∈ ℝ*)
2114, 20syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ*)
2221ad2antrr 724 . . . . . . . . 9 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*)
23 elicc1 12785 . . . . . . . . 9 ((0 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
2413, 22, 23sylancr 589 . . . . . . . 8 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
2512, 24mpbid 234 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁))
2625simp2d 1139 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘)
27 elnn0z 11997 . . . . . 6 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
2811, 26, 27sylanbrc 585 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0)
29 dvnf 24526 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
302, 9, 28, 29syl3anc 1367 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
31 taylfval.b . . . . 5 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3231adantlr 713 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3330, 32ffvelrnd 6854 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
3428faccld 13647 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ)
3534nncnd 11656 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ)
3634nnne0d 11690 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0)
3733, 35, 36divcld 11418 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
38 simplr 767 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑋 ∈ ℂ)
395ad2antrr 724 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹:𝐴⟶ℂ)
40 dvnbss 24527 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹)
412, 9, 28, 40syl3anc 1367 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹)
4239, 41fssdmd 6531 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ 𝐴)
43 recnprss 24504 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
441, 43syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
456, 44sstrd 3979 . . . . . . 7 (𝜑𝐴 ⊆ ℂ)
4645ad2antrr 724 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐴 ⊆ ℂ)
4742, 46sstrd 3979 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ ℂ)
4847, 32sseldd 3970 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ ℂ)
4938, 48subcld 10999 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑋𝐵) ∈ ℂ)
5049, 28expcld 13513 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑋𝐵)↑𝑘) ∈ ℂ)
5137, 50mulcld 10663 1 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938  {cpr 4571   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  pm cpm 8409  cc 10537  cr 10538  0cc0 10539   · cmul 10544  +∞cpnf 10674  *cxr 10676  cle 10678  cmin 10872   / cdiv 11299  0cn0 11900  cz 11984  [,]cicc 12744  cexp 13432  !cfa 13636   D𝑛 cdvn 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-seq 13373  df-exp 13433  df-fac 13637  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cnp 21838  df-haus 21925  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-limc 24466  df-dv 24467  df-dvn 24468
This theorem is referenced by:  taylfvallem  24948  taylf  24951  taylplem2  24954  taylpfval  24955
  Copyright terms: Public domain W3C validator