MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Visualization version   GIF version

Theorem uniioombllem3a 23523
Description: Lemma for uniioombl 23528. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3a (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Distinct variable groups:   𝑥,𝑗,𝐹   𝑗,𝐺,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑗,𝑥   𝑗,𝑀,𝑥   𝜑,𝑗,𝑥   𝑇,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑗)   𝐸(𝑥,𝑗)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2 ioof 12435 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 3965 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 rexpssxrxp 10247 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
64, 5sstri 3741 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
7 fss 6205 . . . . . . 7 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
83, 6, 7sylancl 697 . . . . . 6 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
9 fco 6207 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
102, 8, 9sylancr 698 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
11 ffun 6197 . . . . 5 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
12 funiunfv 6657 . . . . 5 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
1310, 11, 123syl 18 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
14 elfznn 12534 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
15 fvco3 6425 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
163, 14, 15syl2an 495 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
1716iuneq2dv 4682 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
1813, 17eqtr3d 2784 . . 3 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
191, 18syl5eq 2794 . 2 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
20 ffvelrn 6508 . . . . . . . . . . . 12 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
213, 14, 20syl2an 495 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
224, 21sseldi 3730 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
23 1st2nd2 7360 . . . . . . . . . 10 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2524fveq2d 6344 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
26 df-ov 6804 . . . . . . . 8 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2725, 26syl6eqr 2800 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
28 ioossre 12399 . . . . . . 7 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
2927, 28syl6eqss 3784 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
3029ralrimiva 3092 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
31 iunss 4701 . . . . 5 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3230, 31sylibr 224 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3319, 32eqsstrd 3768 . . 3 (𝜑𝐾 ⊆ ℝ)
34 fzfid 12937 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3527fveq2d 6344 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
36 ovolfcl 23406 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
373, 14, 36syl2an 495 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
38 ovolioo 23507 . . . . . . 7 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
3937, 38syl 17 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4035, 39eqtrd 2782 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4137simp2d 1135 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
4237simp1d 1134 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
4341, 42resubcld 10621 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
4440, 43eqeltrd 2827 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4534, 44fsumrecl 14635 . . 3 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4619fveq2d 6344 . . . 4 (𝜑 → (vol*‘𝐾) = (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
4729, 44jca 555 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
4847ralrimiva 3092 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
49 ovolfiniun 23440 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5034, 48, 49syl2anc 696 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5146, 50eqbrtrd 4814 . . 3 (𝜑 → (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
52 ovollecl 23422 . . 3 ((𝐾 ⊆ ℝ ∧ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ ∧ (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗)))) → (vol*‘𝐾) ∈ ℝ)
5333, 45, 51, 52syl3anc 1463 . 2 (𝜑 → (vol*‘𝐾) ∈ ℝ)
5419, 53jca 555 1 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  wral 3038  cin 3702  wss 3703  𝒫 cpw 4290  cop 4315   cuni 4576   ciun 4660  Disj wdisj 4760   class class class wbr 4792   × cxp 5252  ran crn 5255  cima 5257  ccom 5258  Fun wfun 6031  wf 6033  cfv 6037  (class class class)co 6801  1st c1st 7319  2nd c2nd 7320  Fincfn 8109  supcsup 8499  cr 10098  1c1 10100   + caddc 10102  *cxr 10236   < clt 10237  cle 10238  cmin 10429  cn 11183  +crp 11996  (,)cioo 12339  ...cfz 12490  seqcseq 12966  abscabs 14144  Σcsu 14586  vol*covol 23402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-rlim 14390  df-sum 14587  df-rest 16256  df-topgen 16277  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-top 20872  df-topon 20889  df-bases 20923  df-cmp 21363  df-ovol 23404  df-vol 23405
This theorem is referenced by:  uniioombllem3  23524
  Copyright terms: Public domain W3C validator