ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addge0 Unicode version

Theorem addge0 8320
Description: The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )

Proof of Theorem addge0
StepHypRef Expression
1 00id 8010 . 2  |-  ( 0  +  0 )  =  0
2 0re 7872 . . . 4  |-  0  e.  RR
3 le2add 8313 . . . 4  |-  ( ( ( 0  e.  RR  /\  0  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( ( 0  <_  A  /\  0  <_  B
)  ->  ( 0  +  0 )  <_ 
( A  +  B
) ) )
42, 2, 3mpanl12 433 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  0  <_  B
)  ->  ( 0  +  0 )  <_ 
( A  +  B
) ) )
54imp 123 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  (
0  +  0 )  <_  ( A  +  B ) )
61, 5eqbrtrrid 4000 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   class class class wbr 3965  (class class class)co 5821   RRcr 7725   0cc0 7726    + caddc 7729    <_ cle 7907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-pre-ltwlin 7839  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4591  df-cnv 4593  df-iota 5134  df-fv 5177  df-ov 5824  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912
This theorem is referenced by:  addge0i  8358  addge0d  8391  ge0addcl  9878  amgm2  11011
  Copyright terms: Public domain W3C validator