ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0modprm0 Unicode version

Theorem nnnn0modprm0 12209
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 12064 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
21adantr 274 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  NN )
3 fzo0sn0fzo1 10177 . . . . 5  |-  ( P  e.  NN  ->  (
0..^ P )  =  ( { 0 }  u.  ( 1..^ P ) ) )
42, 3syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0..^ P )  =  ( { 0 }  u.  ( 1..^ P ) ) )
54eleq2d 2240 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( 0..^ P )  <-> 
I  e.  ( { 0 }  u.  (
1..^ P ) ) ) )
6 elun 3268 . . . . 5  |-  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  <->  ( I  e.  { 0 }  \/  I  e.  ( 1..^ P ) ) )
7 elsni 3601 . . . . . . 7  |-  ( I  e.  { 0 }  ->  I  =  0 )
8 lbfzo0 10137 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ P )  <->  P  e.  NN )
91, 8sylibr 133 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  0  e.  ( 0..^ P ) )
10 elfzoelz 10103 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
11 zcn 9217 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  CC )
12 mul02 8306 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  CC  ->  (
0  x.  N )  =  0 )
1312oveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( N  e.  CC  ->  (
0  +  ( 0  x.  N ) )  =  ( 0  +  0 ) )
14 00id 8060 . . . . . . . . . . . . . . . 16  |-  ( 0  +  0 )  =  0
1513, 14eqtrdi 2219 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
0  +  ( 0  x.  N ) )  =  0 )
1610, 11, 153syl 17 . . . . . . . . . . . . . 14  |-  ( N  e.  ( 1..^ P )  ->  ( 0  +  ( 0  x.  N ) )  =  0 )
1716adantl 275 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0  +  ( 0  x.  N ) )  =  0 )
1817oveq1d 5868 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
0  +  ( 0  x.  N ) )  mod  P )  =  ( 0  mod  P
) )
19 nnq 9592 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  P  e.  QQ )
201, 19syl 14 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  QQ )
211nngt0d 8922 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  0  < 
P )
22 q0mod 10311 . . . . . . . . . . . . . 14  |-  ( ( P  e.  QQ  /\  0  <  P )  -> 
( 0  mod  P
)  =  0 )
2320, 21, 22syl2anc 409 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( 0  mod  P )  =  0 )
2423adantr 274 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0  mod  P )  =  0 )
2518, 24eqtrd 2203 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
0  +  ( 0  x.  N ) )  mod  P )  =  0 )
26 oveq1 5860 . . . . . . . . . . . . . . 15  |-  ( j  =  0  ->  (
j  x.  N )  =  ( 0  x.  N ) )
2726oveq2d 5869 . . . . . . . . . . . . . 14  |-  ( j  =  0  ->  (
0  +  ( j  x.  N ) )  =  ( 0  +  ( 0  x.  N
) ) )
2827oveq1d 5868 . . . . . . . . . . . . 13  |-  ( j  =  0  ->  (
( 0  +  ( j  x.  N ) )  mod  P )  =  ( ( 0  +  ( 0  x.  N ) )  mod 
P ) )
2928eqeq1d 2179 . . . . . . . . . . . 12  |-  ( j  =  0  ->  (
( ( 0  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( 0  +  ( 0  x.  N ) )  mod  P )  =  0 ) )
3029rspcev 2834 . . . . . . . . . . 11  |-  ( ( 0  e.  ( 0..^ P )  /\  (
( 0  +  ( 0  x.  N ) )  mod  P )  =  0 )  ->  E. j  e.  (
0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 )
319, 25, 30syl2an2r 590 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N
) )  mod  P
)  =  0 )
3231adantl 275 . . . . . . . . 9  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 )
33 oveq1 5860 . . . . . . . . . . . . 13  |-  ( I  =  0  ->  (
I  +  ( j  x.  N ) )  =  ( 0  +  ( j  x.  N
) ) )
3433oveq1d 5868 . . . . . . . . . . . 12  |-  ( I  =  0  ->  (
( I  +  ( j  x.  N ) )  mod  P )  =  ( ( 0  +  ( j  x.  N ) )  mod 
P ) )
3534eqeq1d 2179 . . . . . . . . . . 11  |-  ( I  =  0  ->  (
( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( 0  +  ( j  x.  N ) )  mod  P )  =  0 ) )
3635adantr 274 . . . . . . . . . 10  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  ( ( ( I  +  ( j  x.  N ) )  mod  P )  =  0  <->  ( ( 0  +  ( j  x.  N ) )  mod 
P )  =  0 ) )
3736rexbidv 2471 . . . . . . . . 9  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  ( E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 ) )
3832, 37mpbird 166 . . . . . . . 8  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
3938ex 114 . . . . . . 7  |-  ( I  =  0  ->  (
( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
407, 39syl 14 . . . . . 6  |-  ( I  e.  { 0 }  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
41 simpl 108 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  Prime )
4241adantl 275 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  P  e.  Prime )
43 simprr 527 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  N  e.  ( 1..^ P ) )
44 simpl 108 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  I  e.  ( 1..^ P ) )
45 modprm0 12208 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
4642, 43, 44, 45syl3anc 1233 . . . . . . 7  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 )
4746ex 114 . . . . . 6  |-  ( I  e.  ( 1..^ P )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
4840, 47jaoi 711 . . . . 5  |-  ( ( I  e.  { 0 }  \/  I  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
496, 48sylbi 120 . . . 4  |-  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  -> 
( ( P  e. 
Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
5049com12 30 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
515, 50sylbid 149 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
52513impia 1195 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449    u. cun 3119   {csn 3583   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954   NNcn 8878   ZZcz 9212   QQcq 9578  ..^cfzo 10098    mod cmo 10278   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165
This theorem is referenced by:  modprmn0modprm0  12210
  Copyright terms: Public domain W3C validator