ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0modprm0 Unicode version

Theorem nnnn0modprm0 12764
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 12618 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
21adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  NN )
3 fzo0sn0fzo1 10414 . . . . 5  |-  ( P  e.  NN  ->  (
0..^ P )  =  ( { 0 }  u.  ( 1..^ P ) ) )
42, 3syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0..^ P )  =  ( { 0 }  u.  ( 1..^ P ) ) )
54eleq2d 2299 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( 0..^ P )  <-> 
I  e.  ( { 0 }  u.  (
1..^ P ) ) ) )
6 elun 3345 . . . . 5  |-  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  <->  ( I  e.  { 0 }  \/  I  e.  ( 1..^ P ) ) )
7 elsni 3684 . . . . . . 7  |-  ( I  e.  { 0 }  ->  I  =  0 )
8 lbfzo0 10369 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ P )  <->  P  e.  NN )
91, 8sylibr 134 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  0  e.  ( 0..^ P ) )
10 elfzoelz 10331 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
11 zcn 9439 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  CC )
12 mul02 8521 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  CC  ->  (
0  x.  N )  =  0 )
1312oveq2d 6010 . . . . . . . . . . . . . . . 16  |-  ( N  e.  CC  ->  (
0  +  ( 0  x.  N ) )  =  ( 0  +  0 ) )
14 00id 8275 . . . . . . . . . . . . . . . 16  |-  ( 0  +  0 )  =  0
1513, 14eqtrdi 2278 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
0  +  ( 0  x.  N ) )  =  0 )
1610, 11, 153syl 17 . . . . . . . . . . . . . 14  |-  ( N  e.  ( 1..^ P )  ->  ( 0  +  ( 0  x.  N ) )  =  0 )
1716adantl 277 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0  +  ( 0  x.  N ) )  =  0 )
1817oveq1d 6009 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
0  +  ( 0  x.  N ) )  mod  P )  =  ( 0  mod  P
) )
19 nnq 9816 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  P  e.  QQ )
201, 19syl 14 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  QQ )
211nngt0d 9142 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  0  < 
P )
22 q0mod 10564 . . . . . . . . . . . . . 14  |-  ( ( P  e.  QQ  /\  0  <  P )  -> 
( 0  mod  P
)  =  0 )
2320, 21, 22syl2anc 411 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( 0  mod  P )  =  0 )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0  mod  P )  =  0 )
2518, 24eqtrd 2262 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
0  +  ( 0  x.  N ) )  mod  P )  =  0 )
26 oveq1 6001 . . . . . . . . . . . . . . 15  |-  ( j  =  0  ->  (
j  x.  N )  =  ( 0  x.  N ) )
2726oveq2d 6010 . . . . . . . . . . . . . 14  |-  ( j  =  0  ->  (
0  +  ( j  x.  N ) )  =  ( 0  +  ( 0  x.  N
) ) )
2827oveq1d 6009 . . . . . . . . . . . . 13  |-  ( j  =  0  ->  (
( 0  +  ( j  x.  N ) )  mod  P )  =  ( ( 0  +  ( 0  x.  N ) )  mod 
P ) )
2928eqeq1d 2238 . . . . . . . . . . . 12  |-  ( j  =  0  ->  (
( ( 0  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( 0  +  ( 0  x.  N ) )  mod  P )  =  0 ) )
3029rspcev 2907 . . . . . . . . . . 11  |-  ( ( 0  e.  ( 0..^ P )  /\  (
( 0  +  ( 0  x.  N ) )  mod  P )  =  0 )  ->  E. j  e.  (
0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 )
319, 25, 30syl2an2r 597 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N
) )  mod  P
)  =  0 )
3231adantl 277 . . . . . . . . 9  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 )
33 oveq1 6001 . . . . . . . . . . . . 13  |-  ( I  =  0  ->  (
I  +  ( j  x.  N ) )  =  ( 0  +  ( j  x.  N
) ) )
3433oveq1d 6009 . . . . . . . . . . . 12  |-  ( I  =  0  ->  (
( I  +  ( j  x.  N ) )  mod  P )  =  ( ( 0  +  ( j  x.  N ) )  mod 
P ) )
3534eqeq1d 2238 . . . . . . . . . . 11  |-  ( I  =  0  ->  (
( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( 0  +  ( j  x.  N ) )  mod  P )  =  0 ) )
3635adantr 276 . . . . . . . . . 10  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  ( ( ( I  +  ( j  x.  N ) )  mod  P )  =  0  <->  ( ( 0  +  ( j  x.  N ) )  mod 
P )  =  0 ) )
3736rexbidv 2531 . . . . . . . . 9  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  ( E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 ) )
3832, 37mpbird 167 . . . . . . . 8  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
3938ex 115 . . . . . . 7  |-  ( I  =  0  ->  (
( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
407, 39syl 14 . . . . . 6  |-  ( I  e.  { 0 }  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
41 simpl 109 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  Prime )
4241adantl 277 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  P  e.  Prime )
43 simprr 531 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  N  e.  ( 1..^ P ) )
44 simpl 109 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  I  e.  ( 1..^ P ) )
45 modprm0 12763 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
4642, 43, 44, 45syl3anc 1271 . . . . . . 7  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 )
4746ex 115 . . . . . 6  |-  ( I  e.  ( 1..^ P )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
4840, 47jaoi 721 . . . . 5  |-  ( ( I  e.  { 0 }  \/  I  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
496, 48sylbi 121 . . . 4  |-  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  -> 
( ( P  e. 
Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
5049com12 30 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
515, 50sylbid 150 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
52513impia 1224 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509    u. cun 3195   {csn 3666   class class class wbr 4082  (class class class)co 5994   CCcc 7985   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992    < clt 8169   NNcn 9098   ZZcz 9434   QQcq 9802  ..^cfzo 10326    mod cmo 10531   Primecprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-proddc 12048  df-dvds 12285  df-gcd 12461  df-prm 12616  df-phi 12719
This theorem is referenced by:  modprmn0modprm0  12765
  Copyright terms: Public domain W3C validator