ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0modprm0 Unicode version

Theorem nnnn0modprm0 12268
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 12123 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
21adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  NN )
3 fzo0sn0fzo1 10234 . . . . 5  |-  ( P  e.  NN  ->  (
0..^ P )  =  ( { 0 }  u.  ( 1..^ P ) ) )
42, 3syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0..^ P )  =  ( { 0 }  u.  ( 1..^ P ) ) )
54eleq2d 2257 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( 0..^ P )  <-> 
I  e.  ( { 0 }  u.  (
1..^ P ) ) ) )
6 elun 3288 . . . . 5  |-  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  <->  ( I  e.  { 0 }  \/  I  e.  ( 1..^ P ) ) )
7 elsni 3622 . . . . . . 7  |-  ( I  e.  { 0 }  ->  I  =  0 )
8 lbfzo0 10194 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ P )  <->  P  e.  NN )
91, 8sylibr 134 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  0  e.  ( 0..^ P ) )
10 elfzoelz 10160 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
11 zcn 9271 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  CC )
12 mul02 8357 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  CC  ->  (
0  x.  N )  =  0 )
1312oveq2d 5904 . . . . . . . . . . . . . . . 16  |-  ( N  e.  CC  ->  (
0  +  ( 0  x.  N ) )  =  ( 0  +  0 ) )
14 00id 8111 . . . . . . . . . . . . . . . 16  |-  ( 0  +  0 )  =  0
1513, 14eqtrdi 2236 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
0  +  ( 0  x.  N ) )  =  0 )
1610, 11, 153syl 17 . . . . . . . . . . . . . 14  |-  ( N  e.  ( 1..^ P )  ->  ( 0  +  ( 0  x.  N ) )  =  0 )
1716adantl 277 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0  +  ( 0  x.  N ) )  =  0 )
1817oveq1d 5903 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
0  +  ( 0  x.  N ) )  mod  P )  =  ( 0  mod  P
) )
19 nnq 9646 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  P  e.  QQ )
201, 19syl 14 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  QQ )
211nngt0d 8976 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  0  < 
P )
22 q0mod 10368 . . . . . . . . . . . . . 14  |-  ( ( P  e.  QQ  /\  0  <  P )  -> 
( 0  mod  P
)  =  0 )
2320, 21, 22syl2anc 411 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( 0  mod  P )  =  0 )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( 0  mod  P )  =  0 )
2518, 24eqtrd 2220 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
0  +  ( 0  x.  N ) )  mod  P )  =  0 )
26 oveq1 5895 . . . . . . . . . . . . . . 15  |-  ( j  =  0  ->  (
j  x.  N )  =  ( 0  x.  N ) )
2726oveq2d 5904 . . . . . . . . . . . . . 14  |-  ( j  =  0  ->  (
0  +  ( j  x.  N ) )  =  ( 0  +  ( 0  x.  N
) ) )
2827oveq1d 5903 . . . . . . . . . . . . 13  |-  ( j  =  0  ->  (
( 0  +  ( j  x.  N ) )  mod  P )  =  ( ( 0  +  ( 0  x.  N ) )  mod 
P ) )
2928eqeq1d 2196 . . . . . . . . . . . 12  |-  ( j  =  0  ->  (
( ( 0  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( 0  +  ( 0  x.  N ) )  mod  P )  =  0 ) )
3029rspcev 2853 . . . . . . . . . . 11  |-  ( ( 0  e.  ( 0..^ P )  /\  (
( 0  +  ( 0  x.  N ) )  mod  P )  =  0 )  ->  E. j  e.  (
0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 )
319, 25, 30syl2an2r 595 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N
) )  mod  P
)  =  0 )
3231adantl 277 . . . . . . . . 9  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 )
33 oveq1 5895 . . . . . . . . . . . . 13  |-  ( I  =  0  ->  (
I  +  ( j  x.  N ) )  =  ( 0  +  ( j  x.  N
) ) )
3433oveq1d 5903 . . . . . . . . . . . 12  |-  ( I  =  0  ->  (
( I  +  ( j  x.  N ) )  mod  P )  =  ( ( 0  +  ( j  x.  N ) )  mod 
P ) )
3534eqeq1d 2196 . . . . . . . . . . 11  |-  ( I  =  0  ->  (
( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( 0  +  ( j  x.  N ) )  mod  P )  =  0 ) )
3635adantr 276 . . . . . . . . . 10  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  ( ( ( I  +  ( j  x.  N ) )  mod  P )  =  0  <->  ( ( 0  +  ( j  x.  N ) )  mod 
P )  =  0 ) )
3736rexbidv 2488 . . . . . . . . 9  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  ( E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  E. j  e.  ( 0..^ P ) ( ( 0  +  ( j  x.  N ) )  mod  P )  =  0 ) )
3832, 37mpbird 167 . . . . . . . 8  |-  ( ( I  =  0  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
3938ex 115 . . . . . . 7  |-  ( I  =  0  ->  (
( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
407, 39syl 14 . . . . . 6  |-  ( I  e.  { 0 }  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
41 simpl 109 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  Prime )
4241adantl 277 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  P  e.  Prime )
43 simprr 531 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  N  e.  ( 1..^ P ) )
44 simpl 109 . . . . . . . 8  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  I  e.  ( 1..^ P ) )
45 modprm0 12267 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
4642, 43, 44, 45syl3anc 1248 . . . . . . 7  |-  ( ( I  e.  ( 1..^ P )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 )
4746ex 115 . . . . . 6  |-  ( I  e.  ( 1..^ P )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
4840, 47jaoi 717 . . . . 5  |-  ( ( I  e.  { 0 }  \/  I  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
496, 48sylbi 121 . . . 4  |-  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  -> 
( ( P  e. 
Prime  /\  N  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
5049com12 30 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( { 0 }  u.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
515, 50sylbid 150 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
52513impia 1201 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 979    = wceq 1363    e. wcel 2158   E.wrex 2466    u. cun 3139   {csn 3604   class class class wbr 4015  (class class class)co 5888   CCcc 7822   0cc0 7824   1c1 7825    + caddc 7827    x. cmul 7829    < clt 8005   NNcn 8932   ZZcz 9266   QQcq 9632  ..^cfzo 10155    mod cmo 10335   Primecprime 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-2o 6431  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-proddc 11572  df-dvds 11808  df-gcd 11957  df-prm 12121  df-phi 12224
This theorem is referenced by:  modprmn0modprm0  12269
  Copyright terms: Public domain W3C validator