ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add20 Unicode version

Theorem add20 8332
Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
add20  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )

Proof of Theorem add20
StepHypRef Expression
1 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  0  <_  A
)
2 simplrl 525 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  e.  RR )
3 simplll 523 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  A  e.  RR )
4 addge02 8331 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  B  <_  ( A  +  B ) ) )
52, 3, 4syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( 0  <_  A 
<->  B  <_  ( A  +  B ) ) )
61, 5mpbid 146 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  <_  ( A  +  B )
)
7 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  +  B )  =  0 )
86, 7breqtrd 3990 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  <_  0
)
9 simplrr 526 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  0  <_  B
)
10 0red 7862 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  0  e.  RR )
112, 10letri3d 7975 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( B  =  0  <->  ( B  <_ 
0  /\  0  <_  B ) ) )
128, 9, 11mpbir2and 929 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  B  =  0 )
1312oveq2d 5834 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  +  B )  =  ( A  +  0 ) )
143recnd 7889 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  A  e.  CC )
1514addid1d 8007 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  + 
0 )  =  A )
1613, 7, 153eqtr3rd 2199 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  A  =  0 )
1716, 12jca 304 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  +  B
)  =  0 )  ->  ( A  =  0  /\  B  =  0 ) )
1817ex 114 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
19 oveq12 5827 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  +  B )  =  ( 0  +  0 ) )
20 00id 7999 . . 3  |-  ( 0  +  0 )  =  0
2119, 20eqtrdi 2206 . 2  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  +  B )  =  0 )
2218, 21impbid1 141 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5818   RRcr 7714   0cc0 7715    + caddc 7718    <_ cle 7896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-i2m1 7820  ax-0id 7823  ax-rnegex 7824  ax-pre-ltirr 7827  ax-pre-apti 7830  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4589  df-cnv 4591  df-iota 5132  df-fv 5175  df-ov 5821  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901
This theorem is referenced by:  add20i  8350  xnn0xadd0  9753  sumsqeq0  10479
  Copyright terms: Public domain W3C validator