Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add20 | Unicode version |
Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
add20 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 529 | . . . . . . . . 9 | |
2 | simplrl 530 | . . . . . . . . . 10 | |
3 | simplll 528 | . . . . . . . . . 10 | |
4 | addge02 8392 | . . . . . . . . . 10 | |
5 | 2, 3, 4 | syl2anc 409 | . . . . . . . . 9 |
6 | 1, 5 | mpbid 146 | . . . . . . . 8 |
7 | simpr 109 | . . . . . . . 8 | |
8 | 6, 7 | breqtrd 4015 | . . . . . . 7 |
9 | simplrr 531 | . . . . . . 7 | |
10 | 0red 7921 | . . . . . . . 8 | |
11 | 2, 10 | letri3d 8035 | . . . . . . 7 |
12 | 8, 9, 11 | mpbir2and 939 | . . . . . 6 |
13 | 12 | oveq2d 5869 | . . . . 5 |
14 | 3 | recnd 7948 | . . . . . 6 |
15 | 14 | addid1d 8068 | . . . . 5 |
16 | 13, 7, 15 | 3eqtr3rd 2212 | . . . 4 |
17 | 16, 12 | jca 304 | . . 3 |
18 | 17 | ex 114 | . 2 |
19 | oveq12 5862 | . . 3 | |
20 | 00id 8060 | . . 3 | |
21 | 19, 20 | eqtrdi 2219 | . 2 |
22 | 18, 21 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 caddc 7777 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: add20i 8411 xnn0xadd0 9824 sumsqeq0 10554 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |