| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add20 | Unicode version | ||
| Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| add20 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 |
. . . . . . . . 9
| |
| 2 | simplrl 535 |
. . . . . . . . . 10
| |
| 3 | simplll 533 |
. . . . . . . . . 10
| |
| 4 | addge02 8581 |
. . . . . . . . . 10
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
|
| 6 | 1, 5 | mpbid 147 |
. . . . . . . 8
|
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | 6, 7 | breqtrd 4085 |
. . . . . . 7
|
| 9 | simplrr 536 |
. . . . . . 7
| |
| 10 | 0red 8108 |
. . . . . . . 8
| |
| 11 | 2, 10 | letri3d 8223 |
. . . . . . 7
|
| 12 | 8, 9, 11 | mpbir2and 947 |
. . . . . 6
|
| 13 | 12 | oveq2d 5983 |
. . . . 5
|
| 14 | 3 | recnd 8136 |
. . . . . 6
|
| 15 | 14 | addridd 8256 |
. . . . 5
|
| 16 | 13, 7, 15 | 3eqtr3rd 2249 |
. . . 4
|
| 17 | 16, 12 | jca 306 |
. . 3
|
| 18 | 17 | ex 115 |
. 2
|
| 19 | oveq12 5976 |
. . 3
| |
| 20 | 00id 8248 |
. . 3
| |
| 21 | 19, 20 | eqtrdi 2256 |
. 2
|
| 22 | 18, 21 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: add20i 8600 xnn0xadd0 10024 sumsqeq0 10800 ccat0 11090 4sqlem15 12843 4sqlem16 12844 2sqlem7 15713 |
| Copyright terms: Public domain | W3C validator |