| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add20 | Unicode version | ||
| Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| add20 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 |
. . . . . . . . 9
| |
| 2 | simplrl 535 |
. . . . . . . . . 10
| |
| 3 | simplll 533 |
. . . . . . . . . 10
| |
| 4 | addge02 8546 |
. . . . . . . . . 10
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
|
| 6 | 1, 5 | mpbid 147 |
. . . . . . . 8
|
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | 6, 7 | breqtrd 4070 |
. . . . . . 7
|
| 9 | simplrr 536 |
. . . . . . 7
| |
| 10 | 0red 8073 |
. . . . . . . 8
| |
| 11 | 2, 10 | letri3d 8188 |
. . . . . . 7
|
| 12 | 8, 9, 11 | mpbir2and 947 |
. . . . . 6
|
| 13 | 12 | oveq2d 5960 |
. . . . 5
|
| 14 | 3 | recnd 8101 |
. . . . . 6
|
| 15 | 14 | addridd 8221 |
. . . . 5
|
| 16 | 13, 7, 15 | 3eqtr3rd 2247 |
. . . 4
|
| 17 | 16, 12 | jca 306 |
. . 3
|
| 18 | 17 | ex 115 |
. 2
|
| 19 | oveq12 5953 |
. . 3
| |
| 20 | 00id 8213 |
. . 3
| |
| 21 | 19, 20 | eqtrdi 2254 |
. 2
|
| 22 | 18, 21 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: add20i 8565 xnn0xadd0 9989 sumsqeq0 10763 ccat0 11052 4sqlem15 12728 4sqlem16 12729 2sqlem7 15598 |
| Copyright terms: Public domain | W3C validator |