ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgtge0 Unicode version

Theorem addgtge0 8479
Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addgtge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )

Proof of Theorem addgtge0
StepHypRef Expression
1 00id 8169 . 2  |-  ( 0  +  0 )  =  0
2 0re 8028 . . . 4  |-  0  e.  RR
3 ltleadd 8475 . . . 4  |-  ( ( ( 0  e.  RR  /\  0  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
42, 2, 3mpanl12 436 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
54imp 124 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  (
0  +  0 )  <  ( A  +  B ) )
61, 5eqbrtrrid 4070 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4034  (class class class)co 5923   RRcr 7880   0cc0 7881    + caddc 7884    < clt 8063    <_ cle 8064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0id 7989  ax-rnegex 7990  ax-pre-ltwlin 7994  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-iota 5220  df-fv 5267  df-ov 5926  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069
This theorem is referenced by:  addgtge0d  8549  recexaplem2  8681  recp1lt1  8928  resqrexlem1arp  11172  resqrexlemp1rp  11173  resqrexlemglsq  11189
  Copyright terms: Public domain W3C validator