ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgtge0 Unicode version

Theorem addgtge0 8342
Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addgtge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )

Proof of Theorem addgtge0
StepHypRef Expression
1 00id 8033 . 2  |-  ( 0  +  0 )  =  0
2 0re 7893 . . . 4  |-  0  e.  RR
3 ltleadd 8338 . . . 4  |-  ( ( ( 0  e.  RR  /\  0  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
42, 2, 3mpanl12 433 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
54imp 123 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  (
0  +  0 )  <  ( A  +  B ) )
61, 5eqbrtrrid 4015 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2135   class class class wbr 3979  (class class class)co 5839   RRcr 7746   0cc0 7747    + caddc 7750    < clt 7927    <_ cle 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-addass 7849  ax-i2m1 7852  ax-0id 7855  ax-rnegex 7856  ax-pre-ltwlin 7860  ax-pre-ltadd 7863
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-xp 4607  df-cnv 4609  df-iota 5150  df-fv 5193  df-ov 5842  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933
This theorem is referenced by:  addgtge0d  8412  recexaplem2  8543  recp1lt1  8788  resqrexlem1arp  10941  resqrexlemp1rp  10942  resqrexlemglsq  10958
  Copyright terms: Public domain W3C validator