ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgtge0 Unicode version

Theorem addgtge0 8505
Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addgtge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )

Proof of Theorem addgtge0
StepHypRef Expression
1 00id 8195 . 2  |-  ( 0  +  0 )  =  0
2 0re 8054 . . . 4  |-  0  e.  RR
3 ltleadd 8501 . . . 4  |-  ( ( ( 0  e.  RR  /\  0  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
42, 2, 3mpanl12 436 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
54imp 124 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  (
0  +  0 )  <  ( A  +  B ) )
61, 5eqbrtrrid 4079 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   class class class wbr 4043  (class class class)co 5934   RRcr 7906   0cc0 7907    + caddc 7910    < clt 8089    <_ cle 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0id 8015  ax-rnegex 8016  ax-pre-ltwlin 8020  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-iota 5229  df-fv 5276  df-ov 5937  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095
This theorem is referenced by:  addgtge0d  8575  recexaplem2  8707  recp1lt1  8954  resqrexlem1arp  11235  resqrexlemp1rp  11236  resqrexlemglsq  11252
  Copyright terms: Public domain W3C validator