ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgtge0 Unicode version

Theorem addgtge0 8432
Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addgtge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )

Proof of Theorem addgtge0
StepHypRef Expression
1 00id 8123 . 2  |-  ( 0  +  0 )  =  0
2 0re 7982 . . . 4  |-  0  e.  RR
3 ltleadd 8428 . . . 4  |-  ( ( ( 0  e.  RR  /\  0  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
42, 2, 3mpanl12 436 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <_  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
54imp 124 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  (
0  +  0 )  <  ( A  +  B ) )
61, 5eqbrtrrid 4054 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  B ) )  ->  0  <  ( A  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   class class class wbr 4018  (class class class)co 5892   RRcr 7835   0cc0 7836    + caddc 7839    < clt 8017    <_ cle 8018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-i2m1 7941  ax-0id 7944  ax-rnegex 7945  ax-pre-ltwlin 7949  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-cnv 4649  df-iota 5193  df-fv 5240  df-ov 5895  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023
This theorem is referenced by:  addgtge0d  8502  recexaplem2  8634  recp1lt1  8881  resqrexlem1arp  11041  resqrexlemp1rp  11042  resqrexlemglsq  11058
  Copyright terms: Public domain W3C validator