![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1kp2ke3k | Unicode version |
Description: Example for df-dec 9399, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision."
The proof here starts with This proof heavily relies on the decimal constructor df-dec 9399 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) |
Ref | Expression |
---|---|
1kp2ke3k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 9206 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 0nn0 9205 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 1, 2 | deccl 9412 |
. . 3
![]() ![]() ![]() ![]() ![]() |
4 | 3, 2 | deccl 9412 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2nn0 9207 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5, 2 | deccl 9412 |
. . 3
![]() ![]() ![]() ![]() ![]() |
7 | 6, 2 | deccl 9412 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
8 | eqid 2187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | eqid 2187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | eqid 2187 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | eqid 2187 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | eqid 2187 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
13 | eqid 2187 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 1p2e3 9067 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | 00id 8112 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 1, 2, 5, 2, 12, 13, 14, 15 | decadd 9451 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 3, 2, 6, 2, 10, 11, 16, 15 | decadd 9451 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 4, 2, 7, 2, 8, 9, 17, 15 | decadd 9451 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-sub 8144 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-dec 9399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |