ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1kp2ke3k Unicode version

Theorem 1kp2ke3k 11606
Description: Example for df-dec 8876, 1000 + 2000 = 3000.

This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.)

This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision."

The proof here starts with  ( 2  +  1 )  =  3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted.

This proof heavily relies on the decimal constructor df-dec 8876 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits.

(Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.)

Assertion
Ref Expression
1kp2ke3k  |-  (;;; 1 0 0 0  + ;;; 2 0 0 0 )  = ;;; 3 0 0 0

Proof of Theorem 1kp2ke3k
StepHypRef Expression
1 1nn0 8687 . . . 4  |-  1  e.  NN0
2 0nn0 8686 . . . 4  |-  0  e.  NN0
31, 2deccl 8889 . . 3  |- ; 1 0  e.  NN0
43, 2deccl 8889 . 2  |- ;; 1 0 0  e.  NN0
5 2nn0 8688 . . . 4  |-  2  e.  NN0
65, 2deccl 8889 . . 3  |- ; 2 0  e.  NN0
76, 2deccl 8889 . 2  |- ;; 2 0 0  e.  NN0
8 eqid 2088 . 2  |- ;;; 1 0 0 0  = ;;; 1 0 0 0
9 eqid 2088 . 2  |- ;;; 2 0 0 0  = ;;; 2 0 0 0
10 eqid 2088 . . 3  |- ;; 1 0 0  = ;; 1 0 0
11 eqid 2088 . . 3  |- ;; 2 0 0  = ;; 2 0 0
12 eqid 2088 . . . 4  |- ; 1 0  = ; 1 0
13 eqid 2088 . . . 4  |- ; 2 0  = ; 2 0
14 1p2e3 8548 . . . 4  |-  ( 1  +  2 )  =  3
15 00id 7621 . . . 4  |-  ( 0  +  0 )  =  0
161, 2, 5, 2, 12, 13, 14, 15decadd 8928 . . 3  |-  (; 1 0  + ; 2 0 )  = ; 3
0
173, 2, 6, 2, 10, 11, 16, 15decadd 8928 . 2  |-  (;; 1 0 0  + ;; 2 0 0 )  = ;; 3 0 0
184, 2, 7, 2, 8, 9, 17, 15decadd 8928 1  |-  (;;; 1 0 0 0  + ;;; 2 0 0 0 )  = ;;; 3 0 0 0
Colors of variables: wff set class
Syntax hints:    = wceq 1289  (class class class)co 5652   0cc0 7348   1c1 7349    + caddc 7351   2c2 8471   3c3 8472  ;cdc 8875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7653  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-5 8482  df-6 8483  df-7 8484  df-8 8485  df-9 8486  df-n0 8672  df-dec 8876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator