| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1kp2ke3k | Unicode version | ||
| Description: Example for df-dec 9504, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision."
The proof here starts with This proof heavily relies on the decimal constructor df-dec 9504 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1kp2ke3k |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9310 |
. . . 4
| |
| 2 | 0nn0 9309 |
. . . 4
| |
| 3 | 1, 2 | deccl 9517 |
. . 3
|
| 4 | 3, 2 | deccl 9517 |
. 2
|
| 5 | 2nn0 9311 |
. . . 4
| |
| 6 | 5, 2 | deccl 9517 |
. . 3
|
| 7 | 6, 2 | deccl 9517 |
. 2
|
| 8 | eqid 2204 |
. 2
| |
| 9 | eqid 2204 |
. 2
| |
| 10 | eqid 2204 |
. . 3
| |
| 11 | eqid 2204 |
. . 3
| |
| 12 | eqid 2204 |
. . . 4
| |
| 13 | eqid 2204 |
. . . 4
| |
| 14 | 1p2e3 9170 |
. . . 4
| |
| 15 | 00id 8212 |
. . . 4
| |
| 16 | 1, 2, 5, 2, 12, 13, 14, 15 | decadd 9556 |
. . 3
|
| 17 | 3, 2, 6, 2, 10, 11, 16, 15 | decadd 9556 |
. 2
|
| 18 | 4, 2, 7, 2, 8, 9, 17, 15 | decadd 9556 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-dec 9504 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |