ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumadd Unicode version

Theorem fsumadd 11417
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1  |-  ( ph  ->  A  e.  Fin )
fsumadd.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumadd.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
Assertion
Ref Expression
fsumadd  |-  ( ph  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fsumadd
Dummy variables  f  j  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 8101 . . . . 5  |-  ( 0  +  0 )  =  0
2 sum0 11399 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
3 sum0 11399 . . . . . 6  |-  sum_ k  e.  (/)  C  =  0
42, 3oveq12i 5890 . . . . 5  |-  ( sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C )  =  ( 0  +  0 )
5 sum0 11399 . . . . 5  |-  sum_ k  e.  (/)  ( B  +  C )  =  0
61, 4, 53eqtr4ri 2209 . . . 4  |-  sum_ k  e.  (/)  ( B  +  C )  =  (
sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C )
7 sumeq1 11366 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( B  +  C )  =  sum_ k  e.  (/)  ( B  +  C ) )
8 sumeq1 11366 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
9 sumeq1 11366 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  C  =  sum_ k  e.  (/)  C )
108, 9oveq12d 5896 . . . 4  |-  ( A  =  (/)  ->  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C )  =  (
sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C ) )
116, 7, 103eqtr4a 2236 . . 3  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
1211a1i 9 . 2  |-  ( ph  ->  ( A  =  (/)  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
13 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  NN )
14 nnuz 9566 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1513, 14eleqtrdi 2270 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  ( ZZ>= `  1 )
)
16 eqid 2177 . . . . . . . . . 10  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  j ) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 j ) ,  0 ) )
17 breq1 4008 . . . . . . . . . . 11  |-  ( j  =  n  ->  (
j  <_  ( `  A
)  <->  n  <_  ( `  A
) ) )
18 fveq2 5517 . . . . . . . . . . 11  |-  ( j  =  n  ->  (
( ( k  e.  A  |->  B )  o.  f ) `  j
)  =  ( ( ( k  e.  A  |->  B )  o.  f
) `  n )
)
1917, 18ifbieq1d 3558 . . . . . . . . . 10  |-  ( j  =  n  ->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j
) ,  0 )  =  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 ) )
20 elnnuz 9567 . . . . . . . . . . . 12  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
2120biimpri 133 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
2221adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  n  e.  NN )
23 fsumadd.2 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2423adantlr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
2524fmpttd 5674 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
26 simprr 531 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
27 f1of 5463 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  f : ( 1 ... ( `  A
) ) --> A )
2826, 27syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
29 fco 5383 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( `  A
) ) --> A )  ->  ( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A ) ) --> CC )
3025, 28, 29syl2anc 411 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
3130ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
32 1zzd 9283 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
1  e.  ZZ )
3313ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( `  A )  e.  NN )
3433nnzd 9377 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( `  A )  e.  ZZ )
35 eluzelz 9540 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  ZZ )
3635ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  ->  n  e.  ZZ )
3732, 34, 363jca 1177 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( 1  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  n  e.  ZZ ) )
38 eluzle 9543 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  1
)  ->  1  <_  n )
3938ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
1  <_  n )
40 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  ->  n  <_  ( `  A )
)
4139, 40jca 306 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( 1  <_  n  /\  n  <_  ( `  A
) ) )
42 elfz2 10018 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... ( `  A )
)  <->  ( ( 1  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  n  e.  ZZ )  /\  ( 1  <_  n  /\  n  <_  ( `  A ) ) ) )
4337, 41, 42sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  ->  n  e.  ( 1 ... ( `  A
) ) )
4431, 43ffvelcdmd 5655 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
45 0cnd 7953 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  -.  n  <_  ( `  A )
)  ->  0  e.  CC )
4622nnzd 9377 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  n  e.  ZZ )
4713adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  NN )
4847nnzd 9377 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  ZZ )
49 zdcle 9332 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  n  <_  ( `  A
) )
5046, 48, 49syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  -> DECID  n  <_  ( `  A
) )
5144, 45, 50ifcldadc 3565 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 )  e.  CC )
5216, 19, 22, 51fvmptd3 5612 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j
) ,  0 ) ) `  n )  =  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 ) )
5352, 51eqeltrd 2254 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j
) ,  0 ) ) `  n )  e.  CC )
54 eqid 2177 . . . . . . . . . 10  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  j ) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 j ) ,  0 ) )
55 fveq2 5517 . . . . . . . . . . 11  |-  ( j  =  n  ->  (
( ( k  e.  A  |->  C )  o.  f ) `  j
)  =  ( ( ( k  e.  A  |->  C )  o.  f
) `  n )
)
5617, 55ifbieq1d 3558 . . . . . . . . . 10  |-  ( j  =  n  ->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  j
) ,  0 )  =  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) ,  0 ) )
57 fsumadd.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
5857adantlr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  C  e.  CC )
5958fmpttd 5674 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  C ) : A --> CC )
6059ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( k  e.  A  |->  C ) : A --> CC )
6128ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
62 fco 5383 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  A  |->  C ) : A --> CC  /\  f : ( 1 ... ( `  A
) ) --> A )  ->  ( ( k  e.  A  |->  C )  o.  f ) : ( 1 ... ( `  A ) ) --> CC )
6360, 61, 62syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  C )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
6463, 43ffvelcdmd 5655 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  e.  CC )
6564, 45, 50ifcldadc 3565 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  0 )  e.  CC )
6654, 56, 22, 65fvmptd3 5612 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  j
) ,  0 ) ) `  n )  =  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) ,  0 ) )
6766, 65eqeltrd 2254 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  j
) ,  0 ) ) `  n )  e.  CC )
68 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) ) )
6928ffvelcdmda 5654 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( f `  n )  e.  A
)
70 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
7123, 57addcld 7980 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  A )  ->  ( B  +  C )  e.  CC )
72 eqid 2177 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  A  |->  ( B  +  C ) )  =  ( k  e.  A  |->  ( B  +  C ) )
7372fvmpt2 5602 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  A  /\  ( B  +  C
)  e.  CC )  ->  ( ( k  e.  A  |->  ( B  +  C ) ) `
 k )  =  ( B  +  C
) )
7470, 71, 73syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( B  +  C ) )
75 eqid 2177 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
7675fvmpt2 5602 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
7770, 23, 76syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
78 eqid 2177 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
7978fvmpt2 5602 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  A  /\  C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  k )  =  C )
8070, 57, 79syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  C ) `  k
)  =  C )
8177, 80oveq12d 5896 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  (
( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  =  ( B  +  C ) )
8274, 81eqtr4d 2213 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( ( ( k  e.  A  |->  B ) `  k
)  +  ( ( k  e.  A  |->  C ) `  k ) ) )
8382ralrimiva 2550 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) ) )
8483ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) ) )
85 nffvmpt1 5528 . . . . . . . . . . . . . . . 16  |-  F/_ k
( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )
86 nffvmpt1 5528 . . . . . . . . . . . . . . . . 17  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
87 nfcv 2319 . . . . . . . . . . . . . . . . 17  |-  F/_ k  +
88 nffvmpt1 5528 . . . . . . . . . . . . . . . . 17  |-  F/_ k
( ( k  e.  A  |->  C ) `  ( f `  n
) )
8986, 87, 88nfov 5908 . . . . . . . . . . . . . . . 16  |-  F/_ k
( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  +  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) )
9085, 89nfeq 2327 . . . . . . . . . . . . . . 15  |-  F/ k ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
91 fveq2 5517 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) ) )
92 fveq2 5517 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
93 fveq2 5517 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  k
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
9492, 93oveq12d 5896 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) ) )
9591, 94eqeq12d 2192 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  <->  ( (
k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `
 n ) )  +  ( ( k  e.  A  |->  C ) `
 ( f `  n ) ) ) ) )
9690, 95rspc 2837 . . . . . . . . . . . . . 14  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
)  =  ( ( ( k  e.  A  |->  B ) `  (
f `  n )
)  +  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) ) ) )
9769, 84, 96sylc 62 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( k  e.  A  |->  ( B  +  C ) ) `
 ( f `  n ) )  =  ( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  +  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) ) )
98 fvco3 5590 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
) )
9928, 98sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) ) )
100 fvco3 5590 . . . . . . . . . . . . . . 15  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
10128, 100sylan 283 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( f `  n
) ) )
102 fvco3 5590 . . . . . . . . . . . . . . 15  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
10328, 102sylan 283 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) )
104101, 103oveq12d 5896 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( ( k  e.  A  |->  B )  o.  f
) `  n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `
 n ) )  +  ( ( k  e.  A  |->  C ) `
 ( f `  n ) ) ) )
10597, 99, 1043eqtr4d 2220 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 n )  =  ( ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `  n ) ) )
10668, 43, 105syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( ( ( k  e.  A  |->  B )  o.  f ) `  n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ) )
10740iftrued 3543 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  ->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n
) ,  0 )  =  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 n ) )
10840iftrued 3543 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  ->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 )  =  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) )
10940iftrued 3543 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  ->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  0 )  =  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) )
110108, 109oveq12d 5896 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 )  +  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  0 ) )  =  ( ( ( ( k  e.  A  |->  B )  o.  f
) `  n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) ) )
111106, 107, 1103eqtr4d 2220 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  ->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n
) ,  0 )  =  ( if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 )  +  if ( n  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n ) ,  0 ) ) )
1121eqcomi 2181 . . . . . . . . . . 11  |-  0  =  ( 0  +  0 )
113 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  -.  n  <_  ( `  A )
)  ->  -.  n  <_  ( `  A )
)
114113iffalsed 3546 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  -.  n  <_  ( `  A )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  n ) ,  0 )  =  0 )
115113iffalsed 3546 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  -.  n  <_  ( `  A )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 )  =  0 )
116113iffalsed 3546 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  -.  n  <_  ( `  A )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  0 )  =  0 )
117115, 116oveq12d 5896 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  -.  n  <_  ( `  A )
)  ->  ( if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 )  +  if ( n  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n ) ,  0 ) )  =  ( 0  +  0 ) )
118112, 114, 1173eqtr4a 2236 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  -.  n  <_  ( `  A )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  n ) ,  0 )  =  ( if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 )  +  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  0 ) ) )
119 exmiddc 836 . . . . . . . . . . 11  |-  (DECID  n  <_ 
( `  A )  -> 
( n  <_  ( `  A )  \/  -.  n  <_  ( `  A )
) )
12050, 119syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( n  <_  ( `  A )  \/  -.  n  <_  ( `  A ) ) )
121111, 118, 120mpjaodan 798 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  n ) ,  0 )  =  ( if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 )  +  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  0 ) ) )
122 eqid 2177 . . . . . . . . . 10  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  j ) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 j ) ,  0 ) )
123 fveq2 5517 . . . . . . . . . . 11  |-  ( j  =  n  ->  (
( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  j
)  =  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  n )
)
12417, 123ifbieq1d 3558 . . . . . . . . . 10  |-  ( j  =  n  ->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  j
) ,  0 )  =  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 n ) ,  0 ) )
12571fmpttd 5674 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  A  |->  ( B  +  C
) ) : A --> CC )
126125ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( k  e.  A  |->  ( B  +  C
) ) : A --> CC )
127 fco 5383 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  A  |->  ( B  +  C
) ) : A --> CC  /\  f : ( 1 ... ( `  A
) ) --> A )  ->  ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) : ( 1 ... ( `  A ) ) --> CC )
128126, 61, 127syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
129128, 43ffvelcdmd 5655 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  /\  n  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  e.  CC )
130129, 45, 50ifcldadc 3565 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  if (
n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  n ) ,  0 )  e.  CC )
131122, 124, 22, 130fvmptd3 5612 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  j
) ,  0 ) ) `  n )  =  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 n ) ,  0 ) )
13252, 66oveq12d 5896 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( (
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j
) ,  0 ) ) `  n )  +  ( ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  j ) ,  0 ) ) `
 n ) )  =  ( if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 )  +  if ( n  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n ) ,  0 ) ) )
133121, 131, 1323eqtr4d 2220 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( ZZ>= `  1 )
)  ->  ( (
j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  j
) ,  0 ) ) `  n )  =  ( ( ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j
) ,  0 ) ) `  n )  +  ( ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  j ) ,  0 ) ) `
 n ) ) )
13415, 53, 67, 133ser3add 10508 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
(  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 j ) ,  0 ) ) ) `
 ( `  A
) )  =  ( (  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  j ) ,  0 ) ) ) `  ( `  A
) )  +  (  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 j ) ,  0 ) ) ) `
 ( `  A
) ) ) )
135 fveq2 5517 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  m
)  =  ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) ) )
13624, 58addcld 7980 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  ( B  +  C )  e.  CC )
137136fmpttd 5674 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  ( B  +  C
) ) : A --> CC )
138137ffvelcdmda 5654 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  m
)  e.  CC )
139135, 13, 26, 138, 99fsum3 11398 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( B  +  C
) ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) ) )
140 breq1 4008 . . . . . . . . . . . 12  |-  ( n  =  j  ->  (
n  <_  ( `  A
)  <->  j  <_  ( `  A ) ) )
141 fveq2 5517 . . . . . . . . . . . 12  |-  ( n  =  j  ->  (
( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  j )
)
142140, 141ifbieq1d 3558 . . . . . . . . . . 11  |-  ( n  =  j  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  n ) ,  0 )  =  if ( j  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  j ) ,  0 ) )
143142cbvmptv 4101 . . . . . . . . . 10  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  n ) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 j ) ,  0 ) )
144 seqeq3 10453 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n
) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  j ) ,  0 ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `
 n ) ,  0 ) ) )  =  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  j ) ,  0 ) ) ) )
145143, 144ax-mp 5 . . . . . . . . 9  |-  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n
) ,  0 ) ) )  =  seq 1 (  +  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  j
) ,  0 ) ) )
146145fveq1i 5518 . . . . . . . 8  |-  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  (  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) `  j ) ,  0 ) ) ) `  ( `  A
) )
147139, 146eqtrdi 2226 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( B  +  C
) ) `  m
)  =  (  seq 1 (  +  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  j
) ,  0 ) ) ) `  ( `  A ) ) )
148 fveq2 5517 . . . . . . . . . 10  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
14925ffvelcdmda 5654 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
150148, 13, 26, 149, 101fsum3 11398 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) ) )
151 fveq2 5517 . . . . . . . . . . . . 13  |-  ( n  =  j  ->  (
( ( k  e.  A  |->  B )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  B )  o.  f
) `  j )
)
152140, 151ifbieq1d 3558 . . . . . . . . . . . 12  |-  ( n  =  j  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 )  =  if ( j  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j ) ,  0 ) )
153152cbvmptv 4101 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 j ) ,  0 ) )
154 seqeq3 10453 . . . . . . . . . . 11  |-  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  j ) ,  0 ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  0 ) ) )  =  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  j ) ,  0 ) ) ) )
155153, 154ax-mp 5 . . . . . . . . . 10  |-  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) )  =  seq 1 (  +  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j
) ,  0 ) ) )
156155fveq1i 5518 . . . . . . . . 9  |-  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  (  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  j ) ,  0 ) ) ) `  ( `  A
) )
157150, 156eqtrdi 2226 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  +  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  j
) ,  0 ) ) ) `  ( `  A ) ) )
158 fveq2 5517 . . . . . . . . . 10  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
15959ffvelcdmda 5654 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  e.  CC )
160158, 13, 26, 159, 103fsum3 11398 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) ) )
161 fveq2 5517 . . . . . . . . . . . . 13  |-  ( n  =  j  ->  (
( ( k  e.  A  |->  C )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  C )  o.  f
) `  j )
)
162140, 161ifbieq1d 3558 . . . . . . . . . . . 12  |-  ( n  =  j  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  0 )  =  if ( j  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  j ) ,  0 ) )
163162cbvmptv 4101 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 j ) ,  0 ) )
164 seqeq3 10453 . . . . . . . . . . 11  |-  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  j ) ,  0 ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) ,  0 ) ) )  =  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  j ) ,  0 ) ) ) )
165163, 164ax-mp 5 . . . . . . . . . 10  |-  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  0 ) ) )  =  seq 1 (  +  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  j
) ,  0 ) ) )
166165fveq1i 5518 . . . . . . . . 9  |-  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  0 ) ) ) `  ( `  A ) )  =  (  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  j ) ,  0 ) ) ) `  ( `  A
) )
167160, 166eqtrdi 2226 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  (  seq 1 (  +  , 
( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  j
) ,  0 ) ) ) `  ( `  A ) ) )
168157, 167oveq12d 5896 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( (  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 j ) ,  0 ) ) ) `
 ( `  A
) )  +  (  seq 1 (  +  ,  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 j ) ,  0 ) ) ) `
 ( `  A
) ) ) )
169134, 147, 1683eqtr4d 2220 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( B  +  C
) ) `  m
)  =  ( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) ) )
17071ralrimiva 2550 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  ( B  +  C
)  e.  CC )
171 sumfct 11385 . . . . . . . 8  |-  ( A. k  e.  A  ( B  +  C )  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `
 m )  = 
sum_ k  e.  A  ( B  +  C
) )
172170, 171syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  m )  =  sum_ k  e.  A  ( B  +  C )
)
173172adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  ( B  +  C
) ) `  m
)  =  sum_ k  e.  A  ( B  +  C ) )
17423ralrimiva 2550 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
175 sumfct 11385 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
sum_ k  e.  A  B )
176174, 175syl 14 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
)
17757ralrimiva 2550 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
178 sumfct 11385 . . . . . . . . 9  |-  ( A. k  e.  A  C  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `
 m )  = 
sum_ k  e.  A  C )
179177, 178syl 14 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
)
180176, 179oveq12d 5896 . . . . . . 7  |-  ( ph  ->  ( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
181180adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
182169, 173, 1813eqtr3d 2218 . . . . 5  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  ( B  +  C )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C
) )
183182expr 375 . . . 4  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( f : ( 1 ... ( `  A ) ) -1-1-onto-> A  ->  sum_ k  e.  A  ( B  +  C )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C
) ) )
184183exlimdv 1819 . . 3  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
185184expimpd 363 . 2  |-  ( ph  ->  ( ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
186 fsumadd.1 . . 3  |-  ( ph  ->  A  e.  Fin )
187 fz1f1o 11386 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
188186, 187syl 14 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
18912, 185, 188mpjaod 718 1  |-  ( ph  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   (/)c0 3424   ifcif 3536   class class class wbr 4005    |-> cmpt 4066    o. ccom 4632   -->wf 5214   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5878   Fincfn 6743   CCcc 7812   0cc0 7814   1c1 7815    + caddc 7817    <_ cle 7996   NNcn 8922   ZZcz 9256   ZZ>=cuz 9531   ...cfz 10011    seqcseq 10448  ♯chash 10758   sum_csu 11364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365
This theorem is referenced by:  fsumsplit  11418  fsumsub  11463  binomlem  11494  pcbc  12352
  Copyright terms: Public domain W3C validator