ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexaplem2 Unicode version

Theorem recexaplem2 8671
Description: Lemma for recexap 8672. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexaplem2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) ) #  0 )

Proof of Theorem recexaplem2
StepHypRef Expression
1 ax-icn 7967 . . . . . . . . . . 11  |-  _i  e.  CC
21mul01i 8410 . . . . . . . . . 10  |-  ( _i  x.  0 )  =  0
32oveq2i 5929 . . . . . . . . 9  |-  ( 0  +  ( _i  x.  0 ) )  =  ( 0  +  0 )
4 00id 8160 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
53, 4eqtr2i 2215 . . . . . . . 8  |-  0  =  ( 0  +  ( _i  x.  0 ) )
65breq2i 4037 . . . . . . 7  |-  ( ( A  +  ( _i  x.  B ) ) #  0  <->  ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) ) )
7 0re 8019 . . . . . . . 8  |-  0  e.  RR
8 apreim 8622 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  e.  RR  /\  0  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( A #  0  \/  B #  0
) ) )
97, 7, 8mpanr12 439 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( A #  0  \/  B #  0
) ) )
106, 9bitrid 192 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) ) #  0  <->  ( A #  0  \/  B #  0 ) ) )
1110pm5.32i 454 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  +  ( _i  x.  B
) ) #  0 )  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  ( A #  0  \/  B #  0 ) ) )
12 remulcl 8000 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  x.  A
)  e.  RR )
1312anidms 397 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  x.  A )  e.  RR )
14 remulcl 8000 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  B  e.  RR )  ->  ( B  x.  B
)  e.  RR )
1514anidms 397 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B  x.  B )  e.  RR )
1613, 15anim12i 338 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR ) )
1716adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
18 apsqgt0 8620 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A #  0 )  ->  0  <  ( A  x.  A
) )
19 msqge0 8635 . . . . . . . . 9  |-  ( B  e.  RR  ->  0  <_  ( B  x.  B
) )
2018, 19anim12i 338 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  A )  /\  0  <_  ( B  x.  B ) ) )
2120an32s 568 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )
22 addgtge0 8469 . . . . . . 7  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
2317, 21, 22syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
2416adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
25 msqge0 8635 . . . . . . . . 9  |-  ( A  e.  RR  ->  0  <_  ( A  x.  A
) )
26 apsqgt0 8620 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B #  0 )  ->  0  <  ( B  x.  B
) )
2725, 26anim12i 338 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  B #  0 ) )  ->  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )
2827anassrs 400 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )
29 addgegt0 8468 . . . . . . 7  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3024, 28, 29syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
3123, 30jaodan 798 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A #  0  \/  B #  0 ) )  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3211, 31sylbi 121 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  +  ( _i  x.  B
) ) #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
33323impa 1196 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3433olcd 735 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( (
( A  x.  A
)  +  ( B  x.  B ) )  <  0  \/  0  <  ( ( A  x.  A )  +  ( B  x.  B
) ) ) )
35 simp1 999 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  A  e.  RR )
3635, 35remulcld 8050 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( A  x.  A )  e.  RR )
37 simp2 1000 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  B  e.  RR )
3837, 37remulcld 8050 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( B  x.  B )  e.  RR )
3936, 38readdcld 8049 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) )  e.  RR )
40 reaplt 8607 . . 3  |-  ( ( ( ( A  x.  A )  +  ( B  x.  B ) )  e.  RR  /\  0  e.  RR )  ->  ( ( ( A  x.  A )  +  ( B  x.  B
) ) #  0  <->  (
( ( A  x.  A )  +  ( B  x.  B ) )  <  0  \/  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) ) ) )
4139, 7, 40sylancl 413 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( (
( A  x.  A
)  +  ( B  x.  B ) ) #  0  <->  ( ( ( A  x.  A )  +  ( B  x.  B ) )  <  0  \/  0  < 
( ( A  x.  A )  +  ( B  x.  B ) ) ) ) )
4234, 41mpbird 167 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872   _ici 7874    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by:  recexap  8672
  Copyright terms: Public domain W3C validator