ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexaplem2 Unicode version

Theorem recexaplem2 8725
Description: Lemma for recexap 8726. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexaplem2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) ) #  0 )

Proof of Theorem recexaplem2
StepHypRef Expression
1 ax-icn 8020 . . . . . . . . . . 11  |-  _i  e.  CC
21mul01i 8463 . . . . . . . . . 10  |-  ( _i  x.  0 )  =  0
32oveq2i 5955 . . . . . . . . 9  |-  ( 0  +  ( _i  x.  0 ) )  =  ( 0  +  0 )
4 00id 8213 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
53, 4eqtr2i 2227 . . . . . . . 8  |-  0  =  ( 0  +  ( _i  x.  0 ) )
65breq2i 4052 . . . . . . 7  |-  ( ( A  +  ( _i  x.  B ) ) #  0  <->  ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) ) )
7 0re 8072 . . . . . . . 8  |-  0  e.  RR
8 apreim 8676 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  e.  RR  /\  0  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( A #  0  \/  B #  0
) ) )
97, 7, 8mpanr12 439 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( A #  0  \/  B #  0
) ) )
106, 9bitrid 192 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) ) #  0  <->  ( A #  0  \/  B #  0 ) ) )
1110pm5.32i 454 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  +  ( _i  x.  B
) ) #  0 )  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  ( A #  0  \/  B #  0 ) ) )
12 remulcl 8053 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  x.  A
)  e.  RR )
1312anidms 397 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  x.  A )  e.  RR )
14 remulcl 8053 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  B  e.  RR )  ->  ( B  x.  B
)  e.  RR )
1514anidms 397 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B  x.  B )  e.  RR )
1613, 15anim12i 338 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR ) )
1716adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
18 apsqgt0 8674 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A #  0 )  ->  0  <  ( A  x.  A
) )
19 msqge0 8689 . . . . . . . . 9  |-  ( B  e.  RR  ->  0  <_  ( B  x.  B
) )
2018, 19anim12i 338 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  A )  /\  0  <_  ( B  x.  B ) ) )
2120an32s 568 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )
22 addgtge0 8523 . . . . . . 7  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
2317, 21, 22syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
2416adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
25 msqge0 8689 . . . . . . . . 9  |-  ( A  e.  RR  ->  0  <_  ( A  x.  A
) )
26 apsqgt0 8674 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B #  0 )  ->  0  <  ( B  x.  B
) )
2725, 26anim12i 338 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  B #  0 ) )  ->  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )
2827anassrs 400 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )
29 addgegt0 8522 . . . . . . 7  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3024, 28, 29syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
3123, 30jaodan 799 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A #  0  \/  B #  0 ) )  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3211, 31sylbi 121 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  +  ( _i  x.  B
) ) #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
33323impa 1197 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3433olcd 736 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( (
( A  x.  A
)  +  ( B  x.  B ) )  <  0  \/  0  <  ( ( A  x.  A )  +  ( B  x.  B
) ) ) )
35 simp1 1000 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  A  e.  RR )
3635, 35remulcld 8103 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( A  x.  A )  e.  RR )
37 simp2 1001 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  B  e.  RR )
3837, 37remulcld 8103 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( B  x.  B )  e.  RR )
3936, 38readdcld 8102 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) )  e.  RR )
40 reaplt 8661 . . 3  |-  ( ( ( ( A  x.  A )  +  ( B  x.  B ) )  e.  RR  /\  0  e.  RR )  ->  ( ( ( A  x.  A )  +  ( B  x.  B
) ) #  0  <->  (
( ( A  x.  A )  +  ( B  x.  B ) )  <  0  \/  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) ) ) )
4139, 7, 40sylancl 413 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( (
( A  x.  A
)  +  ( B  x.  B ) ) #  0  <->  ( ( ( A  x.  A )  +  ( B  x.  B ) )  <  0  \/  0  < 
( ( A  x.  A )  +  ( B  x.  B ) ) ) ) )
4234, 41mpbird 167 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925   _ici 7927    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108   # cap 8654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655
This theorem is referenced by:  recexap  8726
  Copyright terms: Public domain W3C validator