ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexaplem2 Unicode version

Theorem recexaplem2 8437
Description: Lemma for recexap 8438. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexaplem2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) ) #  0 )

Proof of Theorem recexaplem2
StepHypRef Expression
1 ax-icn 7739 . . . . . . . . . . 11  |-  _i  e.  CC
21mul01i 8177 . . . . . . . . . 10  |-  ( _i  x.  0 )  =  0
32oveq2i 5793 . . . . . . . . 9  |-  ( 0  +  ( _i  x.  0 ) )  =  ( 0  +  0 )
4 00id 7927 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
53, 4eqtr2i 2162 . . . . . . . 8  |-  0  =  ( 0  +  ( _i  x.  0 ) )
65breq2i 3945 . . . . . . 7  |-  ( ( A  +  ( _i  x.  B ) ) #  0  <->  ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) ) )
7 0re 7790 . . . . . . . 8  |-  0  e.  RR
8 apreim 8389 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  e.  RR  /\  0  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( A #  0  \/  B #  0
) ) )
97, 7, 8mpanr12 436 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( A #  0  \/  B #  0
) ) )
106, 9syl5bb 191 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) ) #  0  <->  ( A #  0  \/  B #  0 ) ) )
1110pm5.32i 450 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  +  ( _i  x.  B
) ) #  0 )  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  ( A #  0  \/  B #  0 ) ) )
12 remulcl 7772 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  x.  A
)  e.  RR )
1312anidms 395 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  x.  A )  e.  RR )
14 remulcl 7772 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  B  e.  RR )  ->  ( B  x.  B
)  e.  RR )
1514anidms 395 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B  x.  B )  e.  RR )
1613, 15anim12i 336 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR ) )
1716adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
18 apsqgt0 8387 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A #  0 )  ->  0  <  ( A  x.  A
) )
19 msqge0 8402 . . . . . . . . 9  |-  ( B  e.  RR  ->  0  <_  ( B  x.  B
) )
2018, 19anim12i 336 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  A )  /\  0  <_  ( B  x.  B ) ) )
2120an32s 558 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )
22 addgtge0 8236 . . . . . . 7  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
2317, 21, 22syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
2416adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
25 msqge0 8402 . . . . . . . . 9  |-  ( A  e.  RR  ->  0  <_  ( A  x.  A
) )
26 apsqgt0 8387 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B #  0 )  ->  0  <  ( B  x.  B
) )
2725, 26anim12i 336 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  B #  0 ) )  ->  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )
2827anassrs 398 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )
29 addgegt0 8235 . . . . . . 7  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3024, 28, 29syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
3123, 30jaodan 787 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A #  0  \/  B #  0 ) )  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3211, 31sylbi 120 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  +  ( _i  x.  B
) ) #  0 )  ->  0  <  (
( A  x.  A
)  +  ( B  x.  B ) ) )
33323impa 1177 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3433olcd 724 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( (
( A  x.  A
)  +  ( B  x.  B ) )  <  0  \/  0  <  ( ( A  x.  A )  +  ( B  x.  B
) ) ) )
35 simp1 982 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  A  e.  RR )
3635, 35remulcld 7820 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( A  x.  A )  e.  RR )
37 simp2 983 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  B  e.  RR )
3837, 37remulcld 7820 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( B  x.  B )  e.  RR )
3936, 38readdcld 7819 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) )  e.  RR )
40 reaplt 8374 . . 3  |-  ( ( ( ( A  x.  A )  +  ( B  x.  B ) )  e.  RR  /\  0  e.  RR )  ->  ( ( ( A  x.  A )  +  ( B  x.  B
) ) #  0  <->  (
( ( A  x.  A )  +  ( B  x.  B ) )  <  0  \/  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) ) ) )
4139, 7, 40sylancl 410 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( (
( A  x.  A
)  +  ( B  x.  B ) ) #  0  <->  ( ( ( A  x.  A )  +  ( B  x.  B ) )  <  0  \/  0  < 
( ( A  x.  A )  +  ( B  x.  B ) ) ) ) )
4234, 41mpbird 166 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  ( ( A  x.  A )  +  ( B  x.  B ) ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644   _ici 7646    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825   # cap 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368
This theorem is referenced by:  recexap  8438
  Copyright terms: Public domain W3C validator