ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt2 Unicode version

Theorem funmpt2 5294
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
funmpt2  |-  Fun  F

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 5293 . 2  |-  Fun  (
x  e.  A  |->  B )
2 funmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
32funeqi 5276 . 2  |-  ( Fun 
F  <->  Fun  ( x  e.  A  |->  B ) )
41, 3mpbir 146 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    = wceq 1364    |-> cmpt 4091   Fun wfun 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-fun 5257
This theorem is referenced by:  fvmptss2  5633  mptrcl  5641  elfvmptrab1  5653  frectfr  6455  frecsuclem  6461  caseinj  7150  caseinl  7152  caseinr  7153  omp1eomlem  7155  djudoml  7281  djudomr  7282  fihashf1rn  10862  4sqlemffi  12537  lidlmex  13974  funtopon  14191  eltg4i  14234  eltg3  14236  tg1  14238  tg2  14239  tgclb  14244  lmrcl  14370  exmidsbthrlem  15582
  Copyright terms: Public domain W3C validator