ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt2 Unicode version

Theorem funmpt2 5316
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
funmpt2  |-  Fun  F

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 5315 . 2  |-  Fun  (
x  e.  A  |->  B )
2 funmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
32funeqi 5298 . 2  |-  ( Fun 
F  <->  Fun  ( x  e.  A  |->  B ) )
41, 3mpbir 146 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    = wceq 1373    |-> cmpt 4110   Fun wfun 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-fun 5279
This theorem is referenced by:  fvmptss2  5664  mptrcl  5672  elfvmptrab1  5684  frectfr  6496  frecsuclem  6502  caseinj  7203  caseinl  7205  caseinr  7206  omp1eomlem  7208  djudoml  7344  djudomr  7345  fihashf1rn  10946  4sqlemffi  12769  lidlmex  14287  funtopon  14534  eltg4i  14577  eltg3  14579  tg1  14581  tg2  14582  tgclb  14587  lmrcl  14713  1vgrex  15669  exmidsbthrlem  16076
  Copyright terms: Public domain W3C validator