ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt2 Unicode version

Theorem funmpt2 5353
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
funmpt2  |-  Fun  F

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 5352 . 2  |-  Fun  (
x  e.  A  |->  B )
2 funmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
32funeqi 5335 . 2  |-  ( Fun 
F  <->  Fun  ( x  e.  A  |->  B ) )
41, 3mpbir 146 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    = wceq 1395    |-> cmpt 4144   Fun wfun 5308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-fun 5316
This theorem is referenced by:  fvmptss2  5702  mptrcl  5710  elfvmptrab1  5722  frectfr  6536  frecsuclem  6542  caseinj  7244  caseinl  7246  caseinr  7247  omp1eomlem  7249  djudoml  7389  djudomr  7390  fihashf1rn  10997  4sqlemffi  12905  lidlmex  14424  funtopon  14671  eltg4i  14714  eltg3  14716  tg1  14718  tg2  14719  tgclb  14724  lmrcl  14850  1vgrex  15806  exmidsbthrlem  16321
  Copyright terms: Public domain W3C validator