ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt2 Unicode version

Theorem funmpt2 5298
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
funmpt2  |-  Fun  F

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 5297 . 2  |-  Fun  (
x  e.  A  |->  B )
2 funmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
32funeqi 5280 . 2  |-  ( Fun 
F  <->  Fun  ( x  e.  A  |->  B ) )
41, 3mpbir 146 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    = wceq 1364    |-> cmpt 4095   Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by:  fvmptss2  5639  mptrcl  5647  elfvmptrab1  5659  frectfr  6467  frecsuclem  6473  caseinj  7164  caseinl  7166  caseinr  7167  omp1eomlem  7169  djudoml  7302  djudomr  7303  fihashf1rn  10897  4sqlemffi  12590  lidlmex  14107  funtopon  14332  eltg4i  14375  eltg3  14377  tg1  14379  tg2  14380  tgclb  14385  lmrcl  14511  exmidsbthrlem  15753
  Copyright terms: Public domain W3C validator