ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotap Unicode version

Theorem 2omotap 7353
Description: If there is at most one tight apartness on  2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotap  |-  ( E* r  r TAp  2o  -> EXMID )

Proof of Theorem 2omotap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2omotaplemst 7352 . . . . 5  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  x  =  { (/) } )  ->  x  =  { (/) } )
21ex 115 . . . 4  |-  ( E* r  r TAp  2o  ->  ( -.  -.  x  =  { (/) }  ->  x  =  { (/) } ) )
3 df-stab 832 . . . 4  |-  (STAB  x  =  { (/) }  <->  ( -.  -.  x  =  { (/)
}  ->  x  =  { (/) } ) )
42, 3sylibr 134 . . 3  |-  ( E* r  r TAp  2o  -> STAB  x  =  { (/) } )
54adantr 276 . 2  |-  ( ( E* r  r TAp  2o  /\  x  C_  { (/) } )  -> STAB 
x  =  { (/) } )
65exmid1stab 4251 1  |-  ( E* r  r TAp  2o  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 831    = wceq 1372   E*wmo 2054    C_ wss 3165   (/)c0 3459   {csn 3632  EXMIDwem 4237   2oc2o 6486   TAp wtap 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-tr 4142  df-exmid 4238  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-1o 6492  df-2o 6493  df-pap 7342  df-tap 7344
This theorem is referenced by:  exmidmotap  7355
  Copyright terms: Public domain W3C validator