ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotap Unicode version

Theorem 2omotap 7319
Description: If there is at most one tight apartness on  2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotap  |-  ( E* r  r TAp  2o  -> EXMID )

Proof of Theorem 2omotap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2omotaplemst 7318 . . . . 5  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  x  =  { (/) } )  ->  x  =  { (/) } )
21ex 115 . . . 4  |-  ( E* r  r TAp  2o  ->  ( -.  -.  x  =  { (/) }  ->  x  =  { (/) } ) )
3 df-stab 832 . . . 4  |-  (STAB  x  =  { (/) }  <->  ( -.  -.  x  =  { (/)
}  ->  x  =  { (/) } ) )
42, 3sylibr 134 . . 3  |-  ( E* r  r TAp  2o  -> STAB  x  =  { (/) } )
54adantr 276 . 2  |-  ( ( E* r  r TAp  2o  /\  x  C_  { (/) } )  -> STAB 
x  =  { (/) } )
65exmid1stab 4237 1  |-  ( E* r  r TAp  2o  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 831    = wceq 1364   E*wmo 2043    C_ wss 3153   (/)c0 3446   {csn 3618  EXMIDwem 4223   2oc2o 6463   TAp wtap 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-1o 6469  df-2o 6470  df-pap 7308  df-tap 7310
This theorem is referenced by:  exmidmotap  7321
  Copyright terms: Public domain W3C validator