ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotap Unicode version

Theorem 2omotap 7326
Description: If there is at most one tight apartness on  2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotap  |-  ( E* r  r TAp  2o  -> EXMID )

Proof of Theorem 2omotap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2omotaplemst 7325 . . . . 5  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  x  =  { (/) } )  ->  x  =  { (/) } )
21ex 115 . . . 4  |-  ( E* r  r TAp  2o  ->  ( -.  -.  x  =  { (/) }  ->  x  =  { (/) } ) )
3 df-stab 832 . . . 4  |-  (STAB  x  =  { (/) }  <->  ( -.  -.  x  =  { (/)
}  ->  x  =  { (/) } ) )
42, 3sylibr 134 . . 3  |-  ( E* r  r TAp  2o  -> STAB  x  =  { (/) } )
54adantr 276 . 2  |-  ( ( E* r  r TAp  2o  /\  x  C_  { (/) } )  -> STAB 
x  =  { (/) } )
65exmid1stab 4241 1  |-  ( E* r  r TAp  2o  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 831    = wceq 1364   E*wmo 2046    C_ wss 3157   (/)c0 3450   {csn 3622  EXMIDwem 4227   2oc2o 6468   TAp wtap 7316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-exmid 4228  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-1o 6474  df-2o 6475  df-pap 7315  df-tap 7317
This theorem is referenced by:  exmidmotap  7328
  Copyright terms: Public domain W3C validator