ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olem Unicode version

Theorem djuf1olem 7065
Description: Lemma for djulf1o 7070 and djurf1o 7071. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olem.1  |-  X  e. 
_V
djuf1olem.2  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
Assertion
Ref Expression
djuf1olem  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 djuf1olem.2 . . 3  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
2 djuf1olem.1 . . . . . 6  |-  X  e. 
_V
32snid 3635 . . . . 5  |-  X  e. 
{ X }
4 opelxpi 4670 . . . . 5  |-  ( ( X  e.  { X }  /\  x  e.  A
)  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
53, 4mpan 424 . . . 4  |-  ( x  e.  A  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
65adantl 277 . . 3  |-  ( ( T.  /\  x  e.  A )  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
7 xp2nd 6180 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( 2nd `  y
)  e.  A )
87adantl 277 . . 3  |-  ( ( T.  /\  y  e.  ( { X }  X.  A ) )  -> 
( 2nd `  y
)  e.  A )
9 1st2nd2 6189 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
10 xp1st 6179 . . . . . . . . . 10  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  e.  { X } )
11 elsni 3622 . . . . . . . . . 10  |-  ( ( 1st `  y )  e.  { X }  ->  ( 1st `  y
)  =  X )
1210, 11syl 14 . . . . . . . . 9  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  =  X )
1312opeq1d 3796 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. X ,  ( 2nd `  y
) >. )
149, 13eqtrd 2220 . . . . . . 7  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. X , 
( 2nd `  y
) >. )
1514eqeq2d 2199 . . . . . 6  |-  ( y  e.  ( { X }  X.  A )  -> 
( <. X ,  x >.  =  y  <->  <. X ,  x >.  =  <. X , 
( 2nd `  y
) >. ) )
16 eqcom 2189 . . . . . 6  |-  ( <. X ,  x >.  =  y  <->  y  =  <. X ,  x >. )
17 eqid 2187 . . . . . . 7  |-  X  =  X
18 vex 2752 . . . . . . . 8  |-  x  e. 
_V
192, 18opth 4249 . . . . . . 7  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  ( X  =  X  /\  x  =  ( 2nd `  y
) ) )
2017, 19mpbiran 941 . . . . . 6  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  x  =  ( 2nd `  y ) )
2115, 16, 203bitr3g 222 . . . . 5  |-  ( y  e.  ( { X }  X.  A )  -> 
( y  =  <. X ,  x >.  <->  x  =  ( 2nd `  y ) ) )
2221bicomd 141 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( x  =  ( 2nd `  y )  <-> 
y  =  <. X ,  x >. ) )
2322ad2antll 491 . . 3  |-  ( ( T.  /\  ( x  e.  A  /\  y  e.  ( { X }  X.  A ) ) )  ->  ( x  =  ( 2nd `  y
)  <->  y  =  <. X ,  x >. )
)
241, 6, 8, 23f1o2d 6089 . 2  |-  ( T. 
->  F : A -1-1-onto-> ( { X }  X.  A
) )
2524mptru 1372 1  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1363   T. wtru 1364    e. wcel 2158   _Vcvv 2749   {csn 3604   <.cop 3607    |-> cmpt 4076    X. cxp 4636   -1-1-onto->wf1o 5227   ` cfv 5228   1stc1st 6152   2ndc2nd 6153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1st 6154  df-2nd 6155
This theorem is referenced by:  djuf1olemr  7066  djulf1o  7070  djurf1o  7071
  Copyright terms: Public domain W3C validator