| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuf1olem | Unicode version | ||
| Description: Lemma for djulf1o 7162 and djurf1o 7163. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuf1olem.1 |
|
| djuf1olem.2 |
|
| Ref | Expression |
|---|---|
| djuf1olem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuf1olem.2 |
. . 3
| |
| 2 | djuf1olem.1 |
. . . . . 6
| |
| 3 | 2 | snid 3664 |
. . . . 5
|
| 4 | opelxpi 4708 |
. . . . 5
| |
| 5 | 3, 4 | mpan 424 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | xp2nd 6254 |
. . . 4
| |
| 8 | 7 | adantl 277 |
. . 3
|
| 9 | 1st2nd2 6263 |
. . . . . . . 8
| |
| 10 | xp1st 6253 |
. . . . . . . . . 10
| |
| 11 | elsni 3651 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | 12 | opeq1d 3825 |
. . . . . . . 8
|
| 14 | 9, 13 | eqtrd 2238 |
. . . . . . 7
|
| 15 | 14 | eqeq2d 2217 |
. . . . . 6
|
| 16 | eqcom 2207 |
. . . . . 6
| |
| 17 | eqid 2205 |
. . . . . . 7
| |
| 18 | vex 2775 |
. . . . . . . 8
| |
| 19 | 2, 18 | opth 4282 |
. . . . . . 7
|
| 20 | 17, 19 | mpbiran 943 |
. . . . . 6
|
| 21 | 15, 16, 20 | 3bitr3g 222 |
. . . . 5
|
| 22 | 21 | bicomd 141 |
. . . 4
|
| 23 | 22 | ad2antll 491 |
. . 3
|
| 24 | 1, 6, 8, 23 | f1o2d 6153 |
. 2
|
| 25 | 24 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-1st 6228 df-2nd 6229 |
| This theorem is referenced by: djuf1olemr 7158 djulf1o 7162 djurf1o 7163 |
| Copyright terms: Public domain | W3C validator |