| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuf1olem | Unicode version | ||
| Description: Lemma for djulf1o 7133 and djurf1o 7134. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuf1olem.1 |
|
| djuf1olem.2 |
|
| Ref | Expression |
|---|---|
| djuf1olem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuf1olem.2 |
. . 3
| |
| 2 | djuf1olem.1 |
. . . . . 6
| |
| 3 | 2 | snid 3654 |
. . . . 5
|
| 4 | opelxpi 4696 |
. . . . 5
| |
| 5 | 3, 4 | mpan 424 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | xp2nd 6233 |
. . . 4
| |
| 8 | 7 | adantl 277 |
. . 3
|
| 9 | 1st2nd2 6242 |
. . . . . . . 8
| |
| 10 | xp1st 6232 |
. . . . . . . . . 10
| |
| 11 | elsni 3641 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | 12 | opeq1d 3815 |
. . . . . . . 8
|
| 14 | 9, 13 | eqtrd 2229 |
. . . . . . 7
|
| 15 | 14 | eqeq2d 2208 |
. . . . . 6
|
| 16 | eqcom 2198 |
. . . . . 6
| |
| 17 | eqid 2196 |
. . . . . . 7
| |
| 18 | vex 2766 |
. . . . . . . 8
| |
| 19 | 2, 18 | opth 4271 |
. . . . . . 7
|
| 20 | 17, 19 | mpbiran 942 |
. . . . . 6
|
| 21 | 15, 16, 20 | 3bitr3g 222 |
. . . . 5
|
| 22 | 21 | bicomd 141 |
. . . 4
|
| 23 | 22 | ad2antll 491 |
. . 3
|
| 24 | 1, 6, 8, 23 | f1o2d 6132 |
. 2
|
| 25 | 24 | mptru 1373 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 |
| This theorem is referenced by: djuf1olemr 7129 djulf1o 7133 djurf1o 7134 |
| Copyright terms: Public domain | W3C validator |