ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olem Unicode version

Theorem djuf1olem 7018
Description: Lemma for djulf1o 7023 and djurf1o 7024. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olem.1  |-  X  e. 
_V
djuf1olem.2  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
Assertion
Ref Expression
djuf1olem  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 djuf1olem.2 . . 3  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
2 djuf1olem.1 . . . . . 6  |-  X  e. 
_V
32snid 3607 . . . . 5  |-  X  e. 
{ X }
4 opelxpi 4636 . . . . 5  |-  ( ( X  e.  { X }  /\  x  e.  A
)  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
53, 4mpan 421 . . . 4  |-  ( x  e.  A  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
65adantl 275 . . 3  |-  ( ( T.  /\  x  e.  A )  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
7 xp2nd 6134 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( 2nd `  y
)  e.  A )
87adantl 275 . . 3  |-  ( ( T.  /\  y  e.  ( { X }  X.  A ) )  -> 
( 2nd `  y
)  e.  A )
9 1st2nd2 6143 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
10 xp1st 6133 . . . . . . . . . 10  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  e.  { X } )
11 elsni 3594 . . . . . . . . . 10  |-  ( ( 1st `  y )  e.  { X }  ->  ( 1st `  y
)  =  X )
1210, 11syl 14 . . . . . . . . 9  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  =  X )
1312opeq1d 3764 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. X ,  ( 2nd `  y
) >. )
149, 13eqtrd 2198 . . . . . . 7  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. X , 
( 2nd `  y
) >. )
1514eqeq2d 2177 . . . . . 6  |-  ( y  e.  ( { X }  X.  A )  -> 
( <. X ,  x >.  =  y  <->  <. X ,  x >.  =  <. X , 
( 2nd `  y
) >. ) )
16 eqcom 2167 . . . . . 6  |-  ( <. X ,  x >.  =  y  <->  y  =  <. X ,  x >. )
17 eqid 2165 . . . . . . 7  |-  X  =  X
18 vex 2729 . . . . . . . 8  |-  x  e. 
_V
192, 18opth 4215 . . . . . . 7  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  ( X  =  X  /\  x  =  ( 2nd `  y
) ) )
2017, 19mpbiran 930 . . . . . 6  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  x  =  ( 2nd `  y ) )
2115, 16, 203bitr3g 221 . . . . 5  |-  ( y  e.  ( { X }  X.  A )  -> 
( y  =  <. X ,  x >.  <->  x  =  ( 2nd `  y ) ) )
2221bicomd 140 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( x  =  ( 2nd `  y )  <-> 
y  =  <. X ,  x >. ) )
2322ad2antll 483 . . 3  |-  ( ( T.  /\  ( x  e.  A  /\  y  e.  ( { X }  X.  A ) ) )  ->  ( x  =  ( 2nd `  y
)  <->  y  =  <. X ,  x >. )
)
241, 6, 8, 23f1o2d 6043 . 2  |-  ( T. 
->  F : A -1-1-onto-> ( { X }  X.  A
) )
2524mptru 1352 1  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   T. wtru 1344    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579    |-> cmpt 4043    X. cxp 4602   -1-1-onto->wf1o 5187   ` cfv 5188   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  djuf1olemr  7019  djulf1o  7023  djurf1o  7024
  Copyright terms: Public domain W3C validator