ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olem Unicode version

Theorem djuf1olem 7030
Description: Lemma for djulf1o 7035 and djurf1o 7036. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olem.1  |-  X  e. 
_V
djuf1olem.2  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
Assertion
Ref Expression
djuf1olem  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 djuf1olem.2 . . 3  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
2 djuf1olem.1 . . . . . 6  |-  X  e. 
_V
32snid 3614 . . . . 5  |-  X  e. 
{ X }
4 opelxpi 4643 . . . . 5  |-  ( ( X  e.  { X }  /\  x  e.  A
)  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
53, 4mpan 422 . . . 4  |-  ( x  e.  A  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
65adantl 275 . . 3  |-  ( ( T.  /\  x  e.  A )  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
7 xp2nd 6145 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( 2nd `  y
)  e.  A )
87adantl 275 . . 3  |-  ( ( T.  /\  y  e.  ( { X }  X.  A ) )  -> 
( 2nd `  y
)  e.  A )
9 1st2nd2 6154 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
10 xp1st 6144 . . . . . . . . . 10  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  e.  { X } )
11 elsni 3601 . . . . . . . . . 10  |-  ( ( 1st `  y )  e.  { X }  ->  ( 1st `  y
)  =  X )
1210, 11syl 14 . . . . . . . . 9  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  =  X )
1312opeq1d 3771 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. X ,  ( 2nd `  y
) >. )
149, 13eqtrd 2203 . . . . . . 7  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. X , 
( 2nd `  y
) >. )
1514eqeq2d 2182 . . . . . 6  |-  ( y  e.  ( { X }  X.  A )  -> 
( <. X ,  x >.  =  y  <->  <. X ,  x >.  =  <. X , 
( 2nd `  y
) >. ) )
16 eqcom 2172 . . . . . 6  |-  ( <. X ,  x >.  =  y  <->  y  =  <. X ,  x >. )
17 eqid 2170 . . . . . . 7  |-  X  =  X
18 vex 2733 . . . . . . . 8  |-  x  e. 
_V
192, 18opth 4222 . . . . . . 7  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  ( X  =  X  /\  x  =  ( 2nd `  y
) ) )
2017, 19mpbiran 935 . . . . . 6  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  x  =  ( 2nd `  y ) )
2115, 16, 203bitr3g 221 . . . . 5  |-  ( y  e.  ( { X }  X.  A )  -> 
( y  =  <. X ,  x >.  <->  x  =  ( 2nd `  y ) ) )
2221bicomd 140 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( x  =  ( 2nd `  y )  <-> 
y  =  <. X ,  x >. ) )
2322ad2antll 488 . . 3  |-  ( ( T.  /\  ( x  e.  A  /\  y  e.  ( { X }  X.  A ) ) )  ->  ( x  =  ( 2nd `  y
)  <->  y  =  <. X ,  x >. )
)
241, 6, 8, 23f1o2d 6054 . 2  |-  ( T. 
->  F : A -1-1-onto-> ( { X }  X.  A
) )
2524mptru 1357 1  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   T. wtru 1349    e. wcel 2141   _Vcvv 2730   {csn 3583   <.cop 3586    |-> cmpt 4050    X. cxp 4609   -1-1-onto->wf1o 5197   ` cfv 5198   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by:  djuf1olemr  7031  djulf1o  7035  djurf1o  7036
  Copyright terms: Public domain W3C validator