Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuf1olem | Unicode version |
Description: Lemma for djulf1o 7035 and djurf1o 7036. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
djuf1olem.1 | |
djuf1olem.2 |
Ref | Expression |
---|---|
djuf1olem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuf1olem.2 | . . 3 | |
2 | djuf1olem.1 | . . . . . 6 | |
3 | 2 | snid 3614 | . . . . 5 |
4 | opelxpi 4643 | . . . . 5 | |
5 | 3, 4 | mpan 422 | . . . 4 |
6 | 5 | adantl 275 | . . 3 |
7 | xp2nd 6145 | . . . 4 | |
8 | 7 | adantl 275 | . . 3 |
9 | 1st2nd2 6154 | . . . . . . . 8 | |
10 | xp1st 6144 | . . . . . . . . . 10 | |
11 | elsni 3601 | . . . . . . . . . 10 | |
12 | 10, 11 | syl 14 | . . . . . . . . 9 |
13 | 12 | opeq1d 3771 | . . . . . . . 8 |
14 | 9, 13 | eqtrd 2203 | . . . . . . 7 |
15 | 14 | eqeq2d 2182 | . . . . . 6 |
16 | eqcom 2172 | . . . . . 6 | |
17 | eqid 2170 | . . . . . . 7 | |
18 | vex 2733 | . . . . . . . 8 | |
19 | 2, 18 | opth 4222 | . . . . . . 7 |
20 | 17, 19 | mpbiran 935 | . . . . . 6 |
21 | 15, 16, 20 | 3bitr3g 221 | . . . . 5 |
22 | 21 | bicomd 140 | . . . 4 |
23 | 22 | ad2antll 488 | . . 3 |
24 | 1, 6, 8, 23 | f1o2d 6054 | . 2 |
25 | 24 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wtru 1349 wcel 2141 cvv 2730 csn 3583 cop 3586 cmpt 4050 cxp 4609 wf1o 5197 cfv 5198 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: djuf1olemr 7031 djulf1o 7035 djurf1o 7036 |
Copyright terms: Public domain | W3C validator |