ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olem Unicode version

Theorem djuf1olem 7051
Description: Lemma for djulf1o 7056 and djurf1o 7057. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olem.1  |-  X  e. 
_V
djuf1olem.2  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
Assertion
Ref Expression
djuf1olem  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 djuf1olem.2 . . 3  |-  F  =  ( x  e.  A  |-> 
<. X ,  x >. )
2 djuf1olem.1 . . . . . 6  |-  X  e. 
_V
32snid 3623 . . . . 5  |-  X  e. 
{ X }
4 opelxpi 4658 . . . . 5  |-  ( ( X  e.  { X }  /\  x  e.  A
)  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
53, 4mpan 424 . . . 4  |-  ( x  e.  A  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
65adantl 277 . . 3  |-  ( ( T.  /\  x  e.  A )  ->  <. X ,  x >.  e.  ( { X }  X.  A
) )
7 xp2nd 6166 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( 2nd `  y
)  e.  A )
87adantl 277 . . 3  |-  ( ( T.  /\  y  e.  ( { X }  X.  A ) )  -> 
( 2nd `  y
)  e.  A )
9 1st2nd2 6175 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
10 xp1st 6165 . . . . . . . . . 10  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  e.  { X } )
11 elsni 3610 . . . . . . . . . 10  |-  ( ( 1st `  y )  e.  { X }  ->  ( 1st `  y
)  =  X )
1210, 11syl 14 . . . . . . . . 9  |-  ( y  e.  ( { X }  X.  A )  -> 
( 1st `  y
)  =  X )
1312opeq1d 3784 . . . . . . . 8  |-  ( y  e.  ( { X }  X.  A )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. X ,  ( 2nd `  y
) >. )
149, 13eqtrd 2210 . . . . . . 7  |-  ( y  e.  ( { X }  X.  A )  -> 
y  =  <. X , 
( 2nd `  y
) >. )
1514eqeq2d 2189 . . . . . 6  |-  ( y  e.  ( { X }  X.  A )  -> 
( <. X ,  x >.  =  y  <->  <. X ,  x >.  =  <. X , 
( 2nd `  y
) >. ) )
16 eqcom 2179 . . . . . 6  |-  ( <. X ,  x >.  =  y  <->  y  =  <. X ,  x >. )
17 eqid 2177 . . . . . . 7  |-  X  =  X
18 vex 2740 . . . . . . . 8  |-  x  e. 
_V
192, 18opth 4237 . . . . . . 7  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  ( X  =  X  /\  x  =  ( 2nd `  y
) ) )
2017, 19mpbiran 940 . . . . . 6  |-  ( <. X ,  x >.  = 
<. X ,  ( 2nd `  y ) >.  <->  x  =  ( 2nd `  y ) )
2115, 16, 203bitr3g 222 . . . . 5  |-  ( y  e.  ( { X }  X.  A )  -> 
( y  =  <. X ,  x >.  <->  x  =  ( 2nd `  y ) ) )
2221bicomd 141 . . . 4  |-  ( y  e.  ( { X }  X.  A )  -> 
( x  =  ( 2nd `  y )  <-> 
y  =  <. X ,  x >. ) )
2322ad2antll 491 . . 3  |-  ( ( T.  /\  ( x  e.  A  /\  y  e.  ( { X }  X.  A ) ) )  ->  ( x  =  ( 2nd `  y
)  <->  y  =  <. X ,  x >. )
)
241, 6, 8, 23f1o2d 6075 . 2  |-  ( T. 
->  F : A -1-1-onto-> ( { X }  X.  A
) )
2524mptru 1362 1  |-  F : A
-1-1-onto-> ( { X }  X.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   T. wtru 1354    e. wcel 2148   _Vcvv 2737   {csn 3592   <.cop 3595    |-> cmpt 4064    X. cxp 4624   -1-1-onto->wf1o 5215   ` cfv 5216   1stc1st 6138   2ndc2nd 6139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-1st 6140  df-2nd 6141
This theorem is referenced by:  djuf1olemr  7052  djulf1o  7056  djurf1o  7057
  Copyright terms: Public domain W3C validator