ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ottposg Unicode version

Theorem ottposg 6401
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
ottposg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )

Proof of Theorem ottposg
StepHypRef Expression
1 brtposg 6400 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
2 df-br 4084 . . 3  |-  ( <. A ,  B >.tpos  F C  <->  <. <. A ,  B >. ,  C >.  e. tpos  F
)
3 df-br 4084 . . 3  |-  ( <. B ,  A >. F C  <->  <. <. B ,  A >. ,  C >.  e.  F
)
41, 2, 33bitr3g 222 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e. tpos  F  <->  <. <. B ,  A >. ,  C >.  e.  F
) )
5 df-ot 3676 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
65eleq1i 2295 . 2  |-  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. <. A ,  B >. ,  C >.  e. tpos  F )
7 df-ot 3676 . . 3  |-  <. B ,  A ,  C >.  = 
<. <. B ,  A >. ,  C >.
87eleq1i 2295 . 2  |-  ( <. B ,  A ,  C >.  e.  F  <->  <. <. B ,  A >. ,  C >.  e.  F )
94, 6, 83bitr4g 223 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    e. wcel 2200   <.cop 3669   <.cotp 3670   class class class wbr 4083  tpos ctpos 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-ot 3676  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-tpos 6391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator