| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumrpcl | Unicode version | ||
| Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumrpcl.1 |
|
| isumrpcl.2 |
|
| isumrpcl.3 |
|
| isumrpcl.4 |
|
| isumrpcl.5 |
|
| isumrpcl.6 |
|
| Ref | Expression |
|---|---|
| isumrpcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrpcl.2 |
. . 3
| |
| 2 | isumrpcl.3 |
. . . . 5
| |
| 3 | isumrpcl.1 |
. . . . 5
| |
| 4 | 2, 3 | eleqtrdi 2297 |
. . . 4
|
| 5 | eluzelz 9656 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | uzss 9668 |
. . . . . . 7
| |
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8, 1, 3 | 3sstr4g 3235 |
. . . . 5
|
| 10 | 9 | sselda 3192 |
. . . 4
|
| 11 | isumrpcl.4 |
. . . 4
| |
| 12 | 10, 11 | syldan 282 |
. . 3
|
| 13 | isumrpcl.5 |
. . . . 5
| |
| 14 | 13 | rpred 9817 |
. . . 4
|
| 15 | 10, 14 | syldan 282 |
. . 3
|
| 16 | isumrpcl.6 |
. . . 4
| |
| 17 | 11, 13 | eqeltrd 2281 |
. . . . . 6
|
| 18 | 17 | rpcnd 9819 |
. . . . 5
|
| 19 | 3, 2, 18 | iserex 11621 |
. . . 4
|
| 20 | 16, 19 | mpbid 147 |
. . 3
|
| 21 | 1, 6, 12, 15, 20 | isumrecl 11711 |
. 2
|
| 22 | fveq2 5575 |
. . . 4
| |
| 23 | 22 | eleq1d 2273 |
. . 3
|
| 24 | 17 | ralrimiva 2578 |
. . 3
|
| 25 | 23, 24, 2 | rspcdva 2881 |
. 2
|
| 26 | 8 | sselda 3192 |
. . . . . 6
|
| 27 | 26, 3 | eleqtrrdi 2298 |
. . . . 5
|
| 28 | 27, 17 | syldan 282 |
. . . 4
|
| 29 | rpaddcl 9798 |
. . . . 5
| |
| 30 | 29 | adantl 277 |
. . . 4
|
| 31 | 6, 28, 30 | seq3-1 10605 |
. . 3
|
| 32 | uzid 9661 |
. . . . . 6
| |
| 33 | 6, 32 | syl 14 |
. . . . 5
|
| 34 | 33, 1 | eleqtrrdi 2298 |
. . . 4
|
| 35 | 15 | recnd 8100 |
. . . . 5
|
| 36 | 1, 6, 12, 35, 20 | isumclim2 11704 |
. . . 4
|
| 37 | 9 | sseld 3191 |
. . . . . . 7
|
| 38 | fveq2 5575 |
. . . . . . . . 9
| |
| 39 | 38 | eleq1d 2273 |
. . . . . . . 8
|
| 40 | 39 | rspcv 2872 |
. . . . . . 7
|
| 41 | 37, 24, 40 | syl6ci 1464 |
. . . . . 6
|
| 42 | 41 | imp 124 |
. . . . 5
|
| 43 | 42 | rpred 9817 |
. . . 4
|
| 44 | 42 | rpge0d 9821 |
. . . 4
|
| 45 | 1, 34, 36, 43, 44 | climserle 11627 |
. . 3
|
| 46 | 31, 45 | eqbrtrrd 4067 |
. 2
|
| 47 | 21, 25, 46 | rpgecld 9857 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-sumdc 11636 |
| This theorem is referenced by: effsumlt 11974 eirraplem 12059 |
| Copyright terms: Public domain | W3C validator |