| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumrpcl | Unicode version | ||
| Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumrpcl.1 |
|
| isumrpcl.2 |
|
| isumrpcl.3 |
|
| isumrpcl.4 |
|
| isumrpcl.5 |
|
| isumrpcl.6 |
|
| Ref | Expression |
|---|---|
| isumrpcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrpcl.2 |
. . 3
| |
| 2 | isumrpcl.3 |
. . . . 5
| |
| 3 | isumrpcl.1 |
. . . . 5
| |
| 4 | 2, 3 | eleqtrdi 2299 |
. . . 4
|
| 5 | eluzelz 9687 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | uzss 9699 |
. . . . . . 7
| |
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8, 1, 3 | 3sstr4g 3240 |
. . . . 5
|
| 10 | 9 | sselda 3197 |
. . . 4
|
| 11 | isumrpcl.4 |
. . . 4
| |
| 12 | 10, 11 | syldan 282 |
. . 3
|
| 13 | isumrpcl.5 |
. . . . 5
| |
| 14 | 13 | rpred 9848 |
. . . 4
|
| 15 | 10, 14 | syldan 282 |
. . 3
|
| 16 | isumrpcl.6 |
. . . 4
| |
| 17 | 11, 13 | eqeltrd 2283 |
. . . . . 6
|
| 18 | 17 | rpcnd 9850 |
. . . . 5
|
| 19 | 3, 2, 18 | iserex 11735 |
. . . 4
|
| 20 | 16, 19 | mpbid 147 |
. . 3
|
| 21 | 1, 6, 12, 15, 20 | isumrecl 11825 |
. 2
|
| 22 | fveq2 5594 |
. . . 4
| |
| 23 | 22 | eleq1d 2275 |
. . 3
|
| 24 | 17 | ralrimiva 2580 |
. . 3
|
| 25 | 23, 24, 2 | rspcdva 2886 |
. 2
|
| 26 | 8 | sselda 3197 |
. . . . . 6
|
| 27 | 26, 3 | eleqtrrdi 2300 |
. . . . 5
|
| 28 | 27, 17 | syldan 282 |
. . . 4
|
| 29 | rpaddcl 9829 |
. . . . 5
| |
| 30 | 29 | adantl 277 |
. . . 4
|
| 31 | 6, 28, 30 | seq3-1 10639 |
. . 3
|
| 32 | uzid 9692 |
. . . . . 6
| |
| 33 | 6, 32 | syl 14 |
. . . . 5
|
| 34 | 33, 1 | eleqtrrdi 2300 |
. . . 4
|
| 35 | 15 | recnd 8131 |
. . . . 5
|
| 36 | 1, 6, 12, 35, 20 | isumclim2 11818 |
. . . 4
|
| 37 | 9 | sseld 3196 |
. . . . . . 7
|
| 38 | fveq2 5594 |
. . . . . . . . 9
| |
| 39 | 38 | eleq1d 2275 |
. . . . . . . 8
|
| 40 | 39 | rspcv 2877 |
. . . . . . 7
|
| 41 | 37, 24, 40 | syl6ci 1466 |
. . . . . 6
|
| 42 | 41 | imp 124 |
. . . . 5
|
| 43 | 42 | rpred 9848 |
. . . 4
|
| 44 | 42 | rpge0d 9852 |
. . . 4
|
| 45 | 1, 34, 36, 43, 44 | climserle 11741 |
. . 3
|
| 46 | 31, 45 | eqbrtrrd 4078 |
. 2
|
| 47 | 21, 25, 46 | rpgecld 9888 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-ihash 10953 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 |
| This theorem is referenced by: effsumlt 12088 eirraplem 12173 |
| Copyright terms: Public domain | W3C validator |