ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumrpcl Unicode version

Theorem isumrpcl 11637
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrpcl.1  |-  Z  =  ( ZZ>= `  M )
isumrpcl.2  |-  W  =  ( ZZ>= `  N )
isumrpcl.3  |-  ( ph  ->  N  e.  Z )
isumrpcl.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumrpcl.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR+ )
isumrpcl.6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumrpcl  |-  ( ph  -> 
sum_ k  e.  W  A  e.  RR+ )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, W    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem isumrpcl
Dummy variables  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumrpcl.2 . . 3  |-  W  =  ( ZZ>= `  N )
2 isumrpcl.3 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 isumrpcl.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
42, 3eleqtrdi 2286 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9601 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . 3  |-  ( ph  ->  N  e.  ZZ )
7 uzss 9613 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
84, 7syl 14 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
)
98, 1, 33sstr4g 3222 . . . . 5  |-  ( ph  ->  W  C_  Z )
109sselda 3179 . . . 4  |-  ( (
ph  /\  k  e.  W )  ->  k  e.  Z )
11 isumrpcl.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
1210, 11syldan 282 . . 3  |-  ( (
ph  /\  k  e.  W )  ->  ( F `  k )  =  A )
13 isumrpcl.5 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR+ )
1413rpred 9762 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
1510, 14syldan 282 . . 3  |-  ( (
ph  /\  k  e.  W )  ->  A  e.  RR )
16 isumrpcl.6 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
1711, 13eqeltrd 2270 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR+ )
1817rpcnd 9764 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
193, 2, 18iserex 11482 . . . 4  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
2016, 19mpbid 147 . . 3  |-  ( ph  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
211, 6, 12, 15, 20isumrecl 11572 . 2  |-  ( ph  -> 
sum_ k  e.  W  A  e.  RR )
22 fveq2 5554 . . . 4  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
2322eleq1d 2262 . . 3  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR+  <->  ( F `  N )  e.  RR+ ) )
2417ralrimiva 2567 . . 3  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  RR+ )
2523, 24, 2rspcdva 2869 . 2  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
268sselda 3179 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  ( ZZ>= `  M )
)
2726, 3eleqtrrdi 2287 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  Z )
2827, 17syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  e.  RR+ )
29 rpaddcl 9743 . . . . 5  |-  ( ( k  e.  RR+  /\  y  e.  RR+ )  ->  (
k  +  y )  e.  RR+ )
3029adantl 277 . . . 4  |-  ( (
ph  /\  ( k  e.  RR+  /\  y  e.  RR+ ) )  ->  (
k  +  y )  e.  RR+ )
316, 28, 30seq3-1 10533 . . 3  |-  ( ph  ->  (  seq N (  +  ,  F ) `
 N )  =  ( F `  N
) )
32 uzid 9606 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
336, 32syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  N ) )
3433, 1eleqtrrdi 2287 . . . 4  |-  ( ph  ->  N  e.  W )
3515recnd 8048 . . . . 5  |-  ( (
ph  /\  k  e.  W )  ->  A  e.  CC )
361, 6, 12, 35, 20isumclim2 11565 . . . 4  |-  ( ph  ->  seq N (  +  ,  F )  ~~>  sum_ k  e.  W  A )
379sseld 3178 . . . . . . 7  |-  ( ph  ->  ( m  e.  W  ->  m  e.  Z ) )
38 fveq2 5554 . . . . . . . . 9  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
3938eleq1d 2262 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  e.  RR+  <->  ( F `  m )  e.  RR+ ) )
4039rspcv 2860 . . . . . . 7  |-  ( m  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  e.  RR+  ->  ( F `
 m )  e.  RR+ ) )
4137, 24, 40syl6ci 1456 . . . . . 6  |-  ( ph  ->  ( m  e.  W  ->  ( F `  m
)  e.  RR+ )
)
4241imp 124 . . . . 5  |-  ( (
ph  /\  m  e.  W )  ->  ( F `  m )  e.  RR+ )
4342rpred 9762 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  ( F `  m )  e.  RR )
4442rpge0d 9766 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  0  <_  ( F `  m
) )
451, 34, 36, 43, 44climserle 11488 . . 3  |-  ( ph  ->  (  seq N (  +  ,  F ) `
 N )  <_  sum_ k  e.  W  A
)
4631, 45eqbrtrrd 4053 . 2  |-  ( ph  ->  ( F `  N
)  <_  sum_ k  e.  W  A )
4721, 25, 46rpgecld 9802 1  |-  ( ph  -> 
sum_ k  e.  W  A  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   dom cdm 4659   ` cfv 5254  (class class class)co 5918   RRcr 7871    + caddc 7875    <_ cle 8055   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719    seqcseq 10518    ~~> cli 11421   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  effsumlt  11835  eirraplem  11920
  Copyright terms: Public domain W3C validator