ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumrpcl Unicode version

Theorem isumrpcl 11678
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrpcl.1  |-  Z  =  ( ZZ>= `  M )
isumrpcl.2  |-  W  =  ( ZZ>= `  N )
isumrpcl.3  |-  ( ph  ->  N  e.  Z )
isumrpcl.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumrpcl.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR+ )
isumrpcl.6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumrpcl  |-  ( ph  -> 
sum_ k  e.  W  A  e.  RR+ )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, W    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem isumrpcl
Dummy variables  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumrpcl.2 . . 3  |-  W  =  ( ZZ>= `  N )
2 isumrpcl.3 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 isumrpcl.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
42, 3eleqtrdi 2289 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9629 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . 3  |-  ( ph  ->  N  e.  ZZ )
7 uzss 9641 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
84, 7syl 14 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
)
98, 1, 33sstr4g 3227 . . . . 5  |-  ( ph  ->  W  C_  Z )
109sselda 3184 . . . 4  |-  ( (
ph  /\  k  e.  W )  ->  k  e.  Z )
11 isumrpcl.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
1210, 11syldan 282 . . 3  |-  ( (
ph  /\  k  e.  W )  ->  ( F `  k )  =  A )
13 isumrpcl.5 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR+ )
1413rpred 9790 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
1510, 14syldan 282 . . 3  |-  ( (
ph  /\  k  e.  W )  ->  A  e.  RR )
16 isumrpcl.6 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
1711, 13eqeltrd 2273 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR+ )
1817rpcnd 9792 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
193, 2, 18iserex 11523 . . . 4  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
2016, 19mpbid 147 . . 3  |-  ( ph  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
211, 6, 12, 15, 20isumrecl 11613 . 2  |-  ( ph  -> 
sum_ k  e.  W  A  e.  RR )
22 fveq2 5561 . . . 4  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
2322eleq1d 2265 . . 3  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR+  <->  ( F `  N )  e.  RR+ ) )
2417ralrimiva 2570 . . 3  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  RR+ )
2523, 24, 2rspcdva 2873 . 2  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
268sselda 3184 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  ( ZZ>= `  M )
)
2726, 3eleqtrrdi 2290 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  Z )
2827, 17syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  e.  RR+ )
29 rpaddcl 9771 . . . . 5  |-  ( ( k  e.  RR+  /\  y  e.  RR+ )  ->  (
k  +  y )  e.  RR+ )
3029adantl 277 . . . 4  |-  ( (
ph  /\  ( k  e.  RR+  /\  y  e.  RR+ ) )  ->  (
k  +  y )  e.  RR+ )
316, 28, 30seq3-1 10573 . . 3  |-  ( ph  ->  (  seq N (  +  ,  F ) `
 N )  =  ( F `  N
) )
32 uzid 9634 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
336, 32syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  N ) )
3433, 1eleqtrrdi 2290 . . . 4  |-  ( ph  ->  N  e.  W )
3515recnd 8074 . . . . 5  |-  ( (
ph  /\  k  e.  W )  ->  A  e.  CC )
361, 6, 12, 35, 20isumclim2 11606 . . . 4  |-  ( ph  ->  seq N (  +  ,  F )  ~~>  sum_ k  e.  W  A )
379sseld 3183 . . . . . . 7  |-  ( ph  ->  ( m  e.  W  ->  m  e.  Z ) )
38 fveq2 5561 . . . . . . . . 9  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
3938eleq1d 2265 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  e.  RR+  <->  ( F `  m )  e.  RR+ ) )
4039rspcv 2864 . . . . . . 7  |-  ( m  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  e.  RR+  ->  ( F `
 m )  e.  RR+ ) )
4137, 24, 40syl6ci 1456 . . . . . 6  |-  ( ph  ->  ( m  e.  W  ->  ( F `  m
)  e.  RR+ )
)
4241imp 124 . . . . 5  |-  ( (
ph  /\  m  e.  W )  ->  ( F `  m )  e.  RR+ )
4342rpred 9790 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  ( F `  m )  e.  RR )
4442rpge0d 9794 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  0  <_  ( F `  m
) )
451, 34, 36, 43, 44climserle 11529 . . 3  |-  ( ph  ->  (  seq N (  +  ,  F ) `
 N )  <_  sum_ k  e.  W  A
)
4631, 45eqbrtrrd 4058 . 2  |-  ( ph  ->  ( F `  N
)  <_  sum_ k  e.  W  A )
4721, 25, 46rpgecld 9830 1  |-  ( ph  -> 
sum_ k  e.  W  A  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   dom cdm 4664   ` cfv 5259  (class class class)co 5925   RRcr 7897    + caddc 7901    <_ cle 8081   ZZcz 9345   ZZ>=cuz 9620   RR+crp 9747    seqcseq 10558    ~~> cli 11462   sum_csu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  effsumlt  11876  eirraplem  11961
  Copyright terms: Public domain W3C validator