ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumsplit Unicode version

Theorem isumsplit 11802
Description: Split off the first  N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
Hypotheses
Ref Expression
isumsplit.1  |-  Z  =  ( ZZ>= `  M )
isumsplit.2  |-  W  =  ( ZZ>= `  N )
isumsplit.3  |-  ( ph  ->  N  e.  Z )
isumsplit.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumsplit.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumsplit.6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumsplit  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A
) )
Distinct variable groups:    k, F    k, M    ph, k    k, Z   
k, N    k, W
Allowed substitution hint:    A( k)

Proof of Theorem isumsplit
Dummy variables  j  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isumsplit.3 . . . 4  |-  ( ph  ->  N  e.  Z )
32, 1eleqtrdi 2298 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzel2 9653 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 14 . 2  |-  ( ph  ->  M  e.  ZZ )
6 isumsplit.4 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
7 isumsplit.5 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
8 isumsplit.2 . . 3  |-  W  =  ( ZZ>= `  N )
9 eluzelz 9657 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
103, 9syl 14 . . 3  |-  ( ph  ->  N  e.  ZZ )
11 uzss 9669 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
123, 11syl 14 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
)
1312, 8, 13sstr4g 3236 . . . . . 6  |-  ( ph  ->  W  C_  Z )
1413sselda 3193 . . . . 5  |-  ( (
ph  /\  k  e.  W )  ->  k  e.  Z )
1514, 6syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  W )  ->  ( F `  k )  =  A )
1614, 7syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  W )  ->  A  e.  CC )
17 isumsplit.6 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
186, 7eqeltrd 2282 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
191, 2, 18iserex 11650 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
2017, 19mpbid 147 . . . 4  |-  ( ph  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
218, 10, 15, 16, 20isumclim2 11733 . . 3  |-  ( ph  ->  seq N (  +  ,  F )  ~~>  sum_ k  e.  W  A )
22 peano2zm 9410 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2310, 22syl 14 . . . . 5  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
245, 23fzfigd 10576 . . . 4  |-  ( ph  ->  ( M ... ( N  -  1 ) )  e.  Fin )
25 elfzuz 10143 . . . . . 6  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
2625, 1eleqtrrdi 2299 . . . . 5  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  Z )
2726, 7sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
2824, 27fsumcl 11711 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M ... ( N  -  1 ) ) A  e.  CC )
2914, 18syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  W )  ->  ( F `  k )  e.  CC )
308, 10, 29serf 10628 . . . 4  |-  ( ph  ->  seq N (  +  ,  F ) : W --> CC )
3130ffvelcdmda 5715 . . 3  |-  ( (
ph  /\  j  e.  W )  ->  (  seq N (  +  ,  F ) `  j
)  e.  CC )
325zred 9495 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  RR )
3332ltm1d 9005 . . . . . . . . . . 11  |-  ( ph  ->  ( M  -  1 )  <  M )
34 peano2zm 9410 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
355, 34syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
36 fzn 10164 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
375, 35, 36syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  - 
1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
3833, 37mpbid 147 . . . . . . . . . 10  |-  ( ph  ->  ( M ... ( M  -  1 ) )  =  (/) )
3938sumeq1d 11677 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( M ... ( M  -  1 ) ) A  =  sum_ k  e.  (/)  A )
4039adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  W )  ->  sum_ k  e.  ( M ... ( M  -  1 ) ) A  =  sum_ k  e.  (/)  A )
41 sum0 11699 . . . . . . . 8  |-  sum_ k  e.  (/)  A  =  0
4240, 41eqtrdi 2254 . . . . . . 7  |-  ( (
ph  /\  j  e.  W )  ->  sum_ k  e.  ( M ... ( M  -  1 ) ) A  =  0 )
4342oveq1d 5959 . . . . . 6  |-  ( (
ph  /\  j  e.  W )  ->  ( sum_ k  e.  ( M ... ( M  - 
1 ) ) A  +  (  seq M
(  +  ,  F
) `  j )
)  =  ( 0  +  (  seq M
(  +  ,  F
) `  j )
) )
4413sselda 3193 . . . . . . . 8  |-  ( (
ph  /\  j  e.  W )  ->  j  e.  Z )
451, 5, 18serf 10628 . . . . . . . . 9  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
4645ffvelcdmda 5715 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
4744, 46syldan 282 . . . . . . 7  |-  ( (
ph  /\  j  e.  W )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
4847addlidd 8222 . . . . . 6  |-  ( (
ph  /\  j  e.  W )  ->  (
0  +  (  seq M (  +  ,  F ) `  j
) )  =  (  seq M (  +  ,  F ) `  j ) )
4943, 48eqtr2d 2239 . . . . 5  |-  ( (
ph  /\  j  e.  W )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( M  -  1 ) ) A  +  (  seq M (  +  ,  F ) `  j ) ) )
50 oveq1 5951 . . . . . . . . 9  |-  ( N  =  M  ->  ( N  -  1 )  =  ( M  - 
1 ) )
5150oveq2d 5960 . . . . . . . 8  |-  ( N  =  M  ->  ( M ... ( N  - 
1 ) )  =  ( M ... ( M  -  1 ) ) )
5251sumeq1d 11677 . . . . . . 7  |-  ( N  =  M  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  sum_ k  e.  ( M ... ( M  -  1 ) ) A )
53 seqeq1 10595 . . . . . . . 8  |-  ( N  =  M  ->  seq N (  +  ,  F )  =  seq M (  +  ,  F ) )
5453fveq1d 5578 . . . . . . 7  |-  ( N  =  M  ->  (  seq N (  +  ,  F ) `  j
)  =  (  seq M (  +  ,  F ) `  j
) )
5552, 54oveq12d 5962 . . . . . 6  |-  ( N  =  M  ->  ( sum_ k  e.  ( M ... ( N  - 
1 ) ) A  +  (  seq N
(  +  ,  F
) `  j )
)  =  ( sum_ k  e.  ( M ... ( M  -  1 ) ) A  +  (  seq M (  +  ,  F ) `  j ) ) )
5655eqeq2d 2217 . . . . 5  |-  ( N  =  M  ->  (
(  seq M (  +  ,  F ) `  j )  =  (
sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j
) )  <->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( M  -  1 ) ) A  +  (  seq M (  +  ,  F ) `  j ) ) ) )
5749, 56syl5ibrcom 157 . . . 4  |-  ( (
ph  /\  j  e.  W )  ->  ( N  =  M  ->  (  seq M (  +  ,  F ) `  j )  =  (
sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j
) ) ) )
58 addcl 8050 . . . . . . . 8  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( k  +  m
)  e.  CC )
5958adantl 277 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  ( k  e.  CC  /\  m  e.  CC ) )  -> 
( k  +  m
)  e.  CC )
60 addass 8055 . . . . . . . 8  |-  ( ( k  e.  CC  /\  m  e.  CC  /\  x  e.  CC )  ->  (
( k  +  m
)  +  x )  =  ( k  +  ( m  +  x
) ) )
6160adantl 277 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  ( k  e.  CC  /\  m  e.  CC  /\  x  e.  CC ) )  -> 
( ( k  +  m )  +  x
)  =  ( k  +  ( m  +  x ) ) )
62 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  j  e.  W )
63 simpll 527 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ph )
6410zcnd 9496 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
65 ax-1cn 8018 . . . . . . . . . . . . 13  |-  1  e.  CC
66 npcan 8281 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
6764, 65, 66sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
6867eqcomd 2211 . . . . . . . . . . 11  |-  ( ph  ->  N  =  ( ( N  -  1 )  +  1 ) )
6963, 68syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  =  ( ( N  - 
1 )  +  1 ) )
7069fveq2d 5580 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ZZ>= `  N )  =  (
ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
718, 70eqtrid 2250 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  W  =  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
7262, 71eleqtrd 2284 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
735adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  W )  ->  M  e.  ZZ )
74 eluzp1m1 9672 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
7573, 74sylan 283 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
761eleq2i 2272 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
7776, 6sylan2br 288 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  A )
7863, 77sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( F `  k )  =  A )
7976, 7sylan2br 288 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
8063, 79sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  A  e.  CC )
8178, 80eqeltrd 2282 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( F `  k )  e.  CC )
8259, 61, 72, 75, 81seq3split 10633 . . . . . 6  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( (  seq M (  +  ,  F ) `  ( N  -  1
) )  +  (  seq ( ( N  -  1 )  +  1 ) (  +  ,  F ) `  j ) ) )
8378, 75, 80fsum3ser 11708 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  (  seq M (  +  ,  F ) `  ( N  -  1
) ) )
8469seqeq1d 10598 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  seq N (  +  ,  F )  =  seq ( ( N  -  1 )  +  1 ) (  +  ,  F ) )
8584fveq1d 5578 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq N (  +  ,  F ) `  j
)  =  (  seq ( ( N  - 
1 )  +  1 ) (  +  ,  F ) `  j
) )
8683, 85oveq12d 5962 . . . . . 6  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) )  =  ( (  seq M
(  +  ,  F
) `  ( N  -  1 ) )  +  (  seq (
( N  -  1 )  +  1 ) (  +  ,  F
) `  j )
) )
8782, 86eqtr4d 2241 . . . . 5  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) ) )
8887ex 115 . . . 4  |-  ( (
ph  /\  j  e.  W )  ->  ( N  e.  ( ZZ>= `  ( M  +  1
) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) ) ) )
89 uzp1 9682 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
903, 89syl 14 . . . . 5  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
9190adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  W )  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1
) ) ) )
9257, 88, 91mpjaod 720 . . 3  |-  ( (
ph  /\  j  e.  W )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) ) )
938, 10, 21, 28, 17, 31, 92climaddc2 11641 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A
) )
941, 5, 6, 7, 93isumclim 11732 1  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   (/)c0 3460   class class class wbr 4044   dom cdm 4675   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    - cmin 8243   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  isum1p  11803  geolim2  11823  mertenslem2  11847  mertensabs  11848  effsumlt  12003  eirraplem  12088  trilpolemeq1  15979  trilpolemlt1  15980  nconstwlpolemgt0  16003
  Copyright terms: Public domain W3C validator