| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumsplit | Unicode version | ||
| Description: Split off the first |
| Ref | Expression |
|---|---|
| isumsplit.1 |
|
| isumsplit.2 |
|
| isumsplit.3 |
|
| isumsplit.4 |
|
| isumsplit.5 |
|
| isumsplit.6 |
|
| Ref | Expression |
|---|---|
| isumsplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumsplit.1 |
. 2
| |
| 2 | isumsplit.3 |
. . . 4
| |
| 3 | 2, 1 | eleqtrdi 2289 |
. . 3
|
| 4 | eluzel2 9606 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | isumsplit.4 |
. 2
| |
| 7 | isumsplit.5 |
. 2
| |
| 8 | isumsplit.2 |
. . 3
| |
| 9 | eluzelz 9610 |
. . . 4
| |
| 10 | 3, 9 | syl 14 |
. . 3
|
| 11 | uzss 9622 |
. . . . . . . 8
| |
| 12 | 3, 11 | syl 14 |
. . . . . . 7
|
| 13 | 12, 8, 1 | 3sstr4g 3226 |
. . . . . 6
|
| 14 | 13 | sselda 3183 |
. . . . 5
|
| 15 | 14, 6 | syldan 282 |
. . . 4
|
| 16 | 14, 7 | syldan 282 |
. . . 4
|
| 17 | isumsplit.6 |
. . . . 5
| |
| 18 | 6, 7 | eqeltrd 2273 |
. . . . . 6
|
| 19 | 1, 2, 18 | iserex 11504 |
. . . . 5
|
| 20 | 17, 19 | mpbid 147 |
. . . 4
|
| 21 | 8, 10, 15, 16, 20 | isumclim2 11587 |
. . 3
|
| 22 | peano2zm 9364 |
. . . . . 6
| |
| 23 | 10, 22 | syl 14 |
. . . . 5
|
| 24 | 5, 23 | fzfigd 10523 |
. . . 4
|
| 25 | elfzuz 10096 |
. . . . . 6
| |
| 26 | 25, 1 | eleqtrrdi 2290 |
. . . . 5
|
| 27 | 26, 7 | sylan2 286 |
. . . 4
|
| 28 | 24, 27 | fsumcl 11565 |
. . 3
|
| 29 | 14, 18 | syldan 282 |
. . . . 5
|
| 30 | 8, 10, 29 | serf 10575 |
. . . 4
|
| 31 | 30 | ffvelcdmda 5697 |
. . 3
|
| 32 | 5 | zred 9448 |
. . . . . . . . . . . 12
|
| 33 | 32 | ltm1d 8959 |
. . . . . . . . . . 11
|
| 34 | peano2zm 9364 |
. . . . . . . . . . . . 13
| |
| 35 | 5, 34 | syl 14 |
. . . . . . . . . . . 12
|
| 36 | fzn 10117 |
. . . . . . . . . . . 12
| |
| 37 | 5, 35, 36 | syl2anc 411 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | mpbid 147 |
. . . . . . . . . 10
|
| 39 | 38 | sumeq1d 11531 |
. . . . . . . . 9
|
| 40 | 39 | adantr 276 |
. . . . . . . 8
|
| 41 | sum0 11553 |
. . . . . . . 8
| |
| 42 | 40, 41 | eqtrdi 2245 |
. . . . . . 7
|
| 43 | 42 | oveq1d 5937 |
. . . . . 6
|
| 44 | 13 | sselda 3183 |
. . . . . . . 8
|
| 45 | 1, 5, 18 | serf 10575 |
. . . . . . . . 9
|
| 46 | 45 | ffvelcdmda 5697 |
. . . . . . . 8
|
| 47 | 44, 46 | syldan 282 |
. . . . . . 7
|
| 48 | 47 | addlidd 8176 |
. . . . . 6
|
| 49 | 43, 48 | eqtr2d 2230 |
. . . . 5
|
| 50 | oveq1 5929 |
. . . . . . . . 9
| |
| 51 | 50 | oveq2d 5938 |
. . . . . . . 8
|
| 52 | 51 | sumeq1d 11531 |
. . . . . . 7
|
| 53 | seqeq1 10542 |
. . . . . . . 8
| |
| 54 | 53 | fveq1d 5560 |
. . . . . . 7
|
| 55 | 52, 54 | oveq12d 5940 |
. . . . . 6
|
| 56 | 55 | eqeq2d 2208 |
. . . . 5
|
| 57 | 49, 56 | syl5ibrcom 157 |
. . . 4
|
| 58 | addcl 8004 |
. . . . . . . 8
| |
| 59 | 58 | adantl 277 |
. . . . . . 7
|
| 60 | addass 8009 |
. . . . . . . 8
| |
| 61 | 60 | adantl 277 |
. . . . . . 7
|
| 62 | simplr 528 |
. . . . . . . 8
| |
| 63 | simpll 527 |
. . . . . . . . . . 11
| |
| 64 | 10 | zcnd 9449 |
. . . . . . . . . . . . 13
|
| 65 | ax-1cn 7972 |
. . . . . . . . . . . . 13
| |
| 66 | npcan 8235 |
. . . . . . . . . . . . 13
| |
| 67 | 64, 65, 66 | sylancl 413 |
. . . . . . . . . . . 12
|
| 68 | 67 | eqcomd 2202 |
. . . . . . . . . . 11
|
| 69 | 63, 68 | syl 14 |
. . . . . . . . . 10
|
| 70 | 69 | fveq2d 5562 |
. . . . . . . . 9
|
| 71 | 8, 70 | eqtrid 2241 |
. . . . . . . 8
|
| 72 | 62, 71 | eleqtrd 2275 |
. . . . . . 7
|
| 73 | 5 | adantr 276 |
. . . . . . . 8
|
| 74 | eluzp1m1 9625 |
. . . . . . . 8
| |
| 75 | 73, 74 | sylan 283 |
. . . . . . 7
|
| 76 | 1 | eleq2i 2263 |
. . . . . . . . . 10
|
| 77 | 76, 6 | sylan2br 288 |
. . . . . . . . 9
|
| 78 | 63, 77 | sylan 283 |
. . . . . . . 8
|
| 79 | 76, 7 | sylan2br 288 |
. . . . . . . . 9
|
| 80 | 63, 79 | sylan 283 |
. . . . . . . 8
|
| 81 | 78, 80 | eqeltrd 2273 |
. . . . . . 7
|
| 82 | 59, 61, 72, 75, 81 | seq3split 10580 |
. . . . . 6
|
| 83 | 78, 75, 80 | fsum3ser 11562 |
. . . . . . 7
|
| 84 | 69 | seqeq1d 10545 |
. . . . . . . 8
|
| 85 | 84 | fveq1d 5560 |
. . . . . . 7
|
| 86 | 83, 85 | oveq12d 5940 |
. . . . . 6
|
| 87 | 82, 86 | eqtr4d 2232 |
. . . . 5
|
| 88 | 87 | ex 115 |
. . . 4
|
| 89 | uzp1 9635 |
. . . . . 6
| |
| 90 | 3, 89 | syl 14 |
. . . . 5
|
| 91 | 90 | adantr 276 |
. . . 4
|
| 92 | 57, 88, 91 | mpjaod 719 |
. . 3
|
| 93 | 8, 10, 21, 28, 17, 31, 92 | climaddc2 11495 |
. 2
|
| 94 | 1, 5, 6, 7, 93 | isumclim 11586 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 |
| This theorem is referenced by: isum1p 11657 geolim2 11677 mertenslem2 11701 mertensabs 11702 effsumlt 11857 eirraplem 11942 trilpolemeq1 15684 trilpolemlt1 15685 nconstwlpolemgt0 15708 |
| Copyright terms: Public domain | W3C validator |