Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isumsplit | Unicode version |
Description: Split off the first terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.) |
Ref | Expression |
---|---|
isumsplit.1 | |
isumsplit.2 | |
isumsplit.3 | |
isumsplit.4 | |
isumsplit.5 | |
isumsplit.6 |
Ref | Expression |
---|---|
isumsplit |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsplit.1 | . 2 | |
2 | isumsplit.3 | . . . 4 | |
3 | 2, 1 | eleqtrdi 2250 | . . 3 |
4 | eluzel2 9450 | . . 3 | |
5 | 3, 4 | syl 14 | . 2 |
6 | isumsplit.4 | . 2 | |
7 | isumsplit.5 | . 2 | |
8 | isumsplit.2 | . . 3 | |
9 | eluzelz 9454 | . . . 4 | |
10 | 3, 9 | syl 14 | . . 3 |
11 | uzss 9465 | . . . . . . . 8 | |
12 | 3, 11 | syl 14 | . . . . . . 7 |
13 | 12, 8, 1 | 3sstr4g 3171 | . . . . . 6 |
14 | 13 | sselda 3128 | . . . . 5 |
15 | 14, 6 | syldan 280 | . . . 4 |
16 | 14, 7 | syldan 280 | . . . 4 |
17 | isumsplit.6 | . . . . 5 | |
18 | 6, 7 | eqeltrd 2234 | . . . . . 6 |
19 | 1, 2, 18 | iserex 11248 | . . . . 5 |
20 | 17, 19 | mpbid 146 | . . . 4 |
21 | 8, 10, 15, 16, 20 | isumclim2 11331 | . . 3 |
22 | peano2zm 9211 | . . . . . 6 | |
23 | 10, 22 | syl 14 | . . . . 5 |
24 | 5, 23 | fzfigd 10340 | . . . 4 |
25 | elfzuz 9931 | . . . . . 6 | |
26 | 25, 1 | eleqtrrdi 2251 | . . . . 5 |
27 | 26, 7 | sylan2 284 | . . . 4 |
28 | 24, 27 | fsumcl 11309 | . . 3 |
29 | 14, 18 | syldan 280 | . . . . 5 |
30 | 8, 10, 29 | serf 10383 | . . . 4 |
31 | 30 | ffvelrnda 5605 | . . 3 |
32 | 5 | zred 9292 | . . . . . . . . . . . 12 |
33 | 32 | ltm1d 8809 | . . . . . . . . . . 11 |
34 | peano2zm 9211 | . . . . . . . . . . . . 13 | |
35 | 5, 34 | syl 14 | . . . . . . . . . . . 12 |
36 | fzn 9951 | . . . . . . . . . . . 12 | |
37 | 5, 35, 36 | syl2anc 409 | . . . . . . . . . . 11 |
38 | 33, 37 | mpbid 146 | . . . . . . . . . 10 |
39 | 38 | sumeq1d 11275 | . . . . . . . . 9 |
40 | 39 | adantr 274 | . . . . . . . 8 |
41 | sum0 11297 | . . . . . . . 8 | |
42 | 40, 41 | eqtrdi 2206 | . . . . . . 7 |
43 | 42 | oveq1d 5842 | . . . . . 6 |
44 | 13 | sselda 3128 | . . . . . . . 8 |
45 | 1, 5, 18 | serf 10383 | . . . . . . . . 9 |
46 | 45 | ffvelrnda 5605 | . . . . . . . 8 |
47 | 44, 46 | syldan 280 | . . . . . . 7 |
48 | 47 | addid2d 8030 | . . . . . 6 |
49 | 43, 48 | eqtr2d 2191 | . . . . 5 |
50 | oveq1 5834 | . . . . . . . . 9 | |
51 | 50 | oveq2d 5843 | . . . . . . . 8 |
52 | 51 | sumeq1d 11275 | . . . . . . 7 |
53 | seqeq1 10357 | . . . . . . . 8 | |
54 | 53 | fveq1d 5473 | . . . . . . 7 |
55 | 52, 54 | oveq12d 5845 | . . . . . 6 |
56 | 55 | eqeq2d 2169 | . . . . 5 |
57 | 49, 56 | syl5ibrcom 156 | . . . 4 |
58 | addcl 7860 | . . . . . . . 8 | |
59 | 58 | adantl 275 | . . . . . . 7 |
60 | addass 7865 | . . . . . . . 8 | |
61 | 60 | adantl 275 | . . . . . . 7 |
62 | simplr 520 | . . . . . . . 8 | |
63 | simpll 519 | . . . . . . . . . . 11 | |
64 | 10 | zcnd 9293 | . . . . . . . . . . . . 13 |
65 | ax-1cn 7828 | . . . . . . . . . . . . 13 | |
66 | npcan 8089 | . . . . . . . . . . . . 13 | |
67 | 64, 65, 66 | sylancl 410 | . . . . . . . . . . . 12 |
68 | 67 | eqcomd 2163 | . . . . . . . . . . 11 |
69 | 63, 68 | syl 14 | . . . . . . . . . 10 |
70 | 69 | fveq2d 5475 | . . . . . . . . 9 |
71 | 8, 70 | syl5eq 2202 | . . . . . . . 8 |
72 | 62, 71 | eleqtrd 2236 | . . . . . . 7 |
73 | 5 | adantr 274 | . . . . . . . 8 |
74 | eluzp1m1 9468 | . . . . . . . 8 | |
75 | 73, 74 | sylan 281 | . . . . . . 7 |
76 | 1 | eleq2i 2224 | . . . . . . . . . 10 |
77 | 76, 6 | sylan2br 286 | . . . . . . . . 9 |
78 | 63, 77 | sylan 281 | . . . . . . . 8 |
79 | 76, 7 | sylan2br 286 | . . . . . . . . 9 |
80 | 63, 79 | sylan 281 | . . . . . . . 8 |
81 | 78, 80 | eqeltrd 2234 | . . . . . . 7 |
82 | 59, 61, 72, 75, 81 | seq3split 10388 | . . . . . 6 |
83 | 78, 75, 80 | fsum3ser 11306 | . . . . . . 7 |
84 | 69 | seqeq1d 10360 | . . . . . . . 8 |
85 | 84 | fveq1d 5473 | . . . . . . 7 |
86 | 83, 85 | oveq12d 5845 | . . . . . 6 |
87 | 82, 86 | eqtr4d 2193 | . . . . 5 |
88 | 87 | ex 114 | . . . 4 |
89 | uzp1 9478 | . . . . . 6 | |
90 | 3, 89 | syl 14 | . . . . 5 |
91 | 90 | adantr 274 | . . . 4 |
92 | 57, 88, 91 | mpjaod 708 | . . 3 |
93 | 8, 10, 21, 28, 17, 31, 92 | climaddc2 11239 | . 2 |
94 | 1, 5, 6, 7, 93 | isumclim 11330 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3a 963 wceq 1335 wcel 2128 wss 3102 c0 3395 class class class wbr 3967 cdm 4589 cfv 5173 (class class class)co 5827 cc 7733 cc0 7735 c1 7736 caddc 7738 clt 7915 cmin 8051 cz 9173 cuz 9445 cfz 9919 cseq 10354 cli 11187 csu 11262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4082 ax-sep 4085 ax-nul 4093 ax-pow 4138 ax-pr 4172 ax-un 4396 ax-setind 4499 ax-iinf 4550 ax-cnex 7826 ax-resscn 7827 ax-1cn 7828 ax-1re 7829 ax-icn 7830 ax-addcl 7831 ax-addrcl 7832 ax-mulcl 7833 ax-mulrcl 7834 ax-addcom 7835 ax-mulcom 7836 ax-addass 7837 ax-mulass 7838 ax-distr 7839 ax-i2m1 7840 ax-0lt1 7841 ax-1rid 7842 ax-0id 7843 ax-rnegex 7844 ax-precex 7845 ax-cnre 7846 ax-pre-ltirr 7847 ax-pre-ltwlin 7848 ax-pre-lttrn 7849 ax-pre-apti 7850 ax-pre-ltadd 7851 ax-pre-mulgt0 7852 ax-pre-mulext 7853 ax-arch 7854 ax-caucvg 7855 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4029 df-mpt 4030 df-tr 4066 df-id 4256 df-po 4259 df-iso 4260 df-iord 4329 df-on 4331 df-ilim 4332 df-suc 4334 df-iom 4553 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-rn 4600 df-res 4601 df-ima 4602 df-iota 5138 df-fun 5175 df-fn 5176 df-f 5177 df-f1 5178 df-fo 5179 df-f1o 5180 df-fv 5181 df-isom 5182 df-riota 5783 df-ov 5830 df-oprab 5831 df-mpo 5832 df-1st 6091 df-2nd 6092 df-recs 6255 df-irdg 6320 df-frec 6341 df-1o 6366 df-oadd 6370 df-er 6483 df-en 6689 df-dom 6690 df-fin 6691 df-pnf 7917 df-mnf 7918 df-xr 7919 df-ltxr 7920 df-le 7921 df-sub 8053 df-neg 8054 df-reap 8455 df-ap 8462 df-div 8551 df-inn 8840 df-2 8898 df-3 8899 df-4 8900 df-n0 9097 df-z 9174 df-uz 9446 df-q 9536 df-rp 9568 df-fz 9920 df-fzo 10052 df-seqfrec 10355 df-exp 10429 df-ihash 10662 df-cj 10754 df-re 10755 df-im 10756 df-rsqrt 10910 df-abs 10911 df-clim 11188 df-sumdc 11263 |
This theorem is referenced by: isum1p 11401 geolim2 11421 mertenslem2 11445 mertensabs 11446 effsumlt 11601 eirraplem 11685 trilpolemeq1 13708 trilpolemlt1 13709 nconstwlpolemgt0 13731 |
Copyright terms: Public domain | W3C validator |