| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumsplit | Unicode version | ||
| Description: Split off the first |
| Ref | Expression |
|---|---|
| isumsplit.1 |
|
| isumsplit.2 |
|
| isumsplit.3 |
|
| isumsplit.4 |
|
| isumsplit.5 |
|
| isumsplit.6 |
|
| Ref | Expression |
|---|---|
| isumsplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumsplit.1 |
. 2
| |
| 2 | isumsplit.3 |
. . . 4
| |
| 3 | 2, 1 | eleqtrdi 2297 |
. . 3
|
| 4 | eluzel2 9652 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | isumsplit.4 |
. 2
| |
| 7 | isumsplit.5 |
. 2
| |
| 8 | isumsplit.2 |
. . 3
| |
| 9 | eluzelz 9656 |
. . . 4
| |
| 10 | 3, 9 | syl 14 |
. . 3
|
| 11 | uzss 9668 |
. . . . . . . 8
| |
| 12 | 3, 11 | syl 14 |
. . . . . . 7
|
| 13 | 12, 8, 1 | 3sstr4g 3235 |
. . . . . 6
|
| 14 | 13 | sselda 3192 |
. . . . 5
|
| 15 | 14, 6 | syldan 282 |
. . . 4
|
| 16 | 14, 7 | syldan 282 |
. . . 4
|
| 17 | isumsplit.6 |
. . . . 5
| |
| 18 | 6, 7 | eqeltrd 2281 |
. . . . . 6
|
| 19 | 1, 2, 18 | iserex 11592 |
. . . . 5
|
| 20 | 17, 19 | mpbid 147 |
. . . 4
|
| 21 | 8, 10, 15, 16, 20 | isumclim2 11675 |
. . 3
|
| 22 | peano2zm 9409 |
. . . . . 6
| |
| 23 | 10, 22 | syl 14 |
. . . . 5
|
| 24 | 5, 23 | fzfigd 10574 |
. . . 4
|
| 25 | elfzuz 10142 |
. . . . . 6
| |
| 26 | 25, 1 | eleqtrrdi 2298 |
. . . . 5
|
| 27 | 26, 7 | sylan2 286 |
. . . 4
|
| 28 | 24, 27 | fsumcl 11653 |
. . 3
|
| 29 | 14, 18 | syldan 282 |
. . . . 5
|
| 30 | 8, 10, 29 | serf 10626 |
. . . 4
|
| 31 | 30 | ffvelcdmda 5714 |
. . 3
|
| 32 | 5 | zred 9494 |
. . . . . . . . . . . 12
|
| 33 | 32 | ltm1d 9004 |
. . . . . . . . . . 11
|
| 34 | peano2zm 9409 |
. . . . . . . . . . . . 13
| |
| 35 | 5, 34 | syl 14 |
. . . . . . . . . . . 12
|
| 36 | fzn 10163 |
. . . . . . . . . . . 12
| |
| 37 | 5, 35, 36 | syl2anc 411 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | mpbid 147 |
. . . . . . . . . 10
|
| 39 | 38 | sumeq1d 11619 |
. . . . . . . . 9
|
| 40 | 39 | adantr 276 |
. . . . . . . 8
|
| 41 | sum0 11641 |
. . . . . . . 8
| |
| 42 | 40, 41 | eqtrdi 2253 |
. . . . . . 7
|
| 43 | 42 | oveq1d 5958 |
. . . . . 6
|
| 44 | 13 | sselda 3192 |
. . . . . . . 8
|
| 45 | 1, 5, 18 | serf 10626 |
. . . . . . . . 9
|
| 46 | 45 | ffvelcdmda 5714 |
. . . . . . . 8
|
| 47 | 44, 46 | syldan 282 |
. . . . . . 7
|
| 48 | 47 | addlidd 8221 |
. . . . . 6
|
| 49 | 43, 48 | eqtr2d 2238 |
. . . . 5
|
| 50 | oveq1 5950 |
. . . . . . . . 9
| |
| 51 | 50 | oveq2d 5959 |
. . . . . . . 8
|
| 52 | 51 | sumeq1d 11619 |
. . . . . . 7
|
| 53 | seqeq1 10593 |
. . . . . . . 8
| |
| 54 | 53 | fveq1d 5577 |
. . . . . . 7
|
| 55 | 52, 54 | oveq12d 5961 |
. . . . . 6
|
| 56 | 55 | eqeq2d 2216 |
. . . . 5
|
| 57 | 49, 56 | syl5ibrcom 157 |
. . . 4
|
| 58 | addcl 8049 |
. . . . . . . 8
| |
| 59 | 58 | adantl 277 |
. . . . . . 7
|
| 60 | addass 8054 |
. . . . . . . 8
| |
| 61 | 60 | adantl 277 |
. . . . . . 7
|
| 62 | simplr 528 |
. . . . . . . 8
| |
| 63 | simpll 527 |
. . . . . . . . . . 11
| |
| 64 | 10 | zcnd 9495 |
. . . . . . . . . . . . 13
|
| 65 | ax-1cn 8017 |
. . . . . . . . . . . . 13
| |
| 66 | npcan 8280 |
. . . . . . . . . . . . 13
| |
| 67 | 64, 65, 66 | sylancl 413 |
. . . . . . . . . . . 12
|
| 68 | 67 | eqcomd 2210 |
. . . . . . . . . . 11
|
| 69 | 63, 68 | syl 14 |
. . . . . . . . . 10
|
| 70 | 69 | fveq2d 5579 |
. . . . . . . . 9
|
| 71 | 8, 70 | eqtrid 2249 |
. . . . . . . 8
|
| 72 | 62, 71 | eleqtrd 2283 |
. . . . . . 7
|
| 73 | 5 | adantr 276 |
. . . . . . . 8
|
| 74 | eluzp1m1 9671 |
. . . . . . . 8
| |
| 75 | 73, 74 | sylan 283 |
. . . . . . 7
|
| 76 | 1 | eleq2i 2271 |
. . . . . . . . . 10
|
| 77 | 76, 6 | sylan2br 288 |
. . . . . . . . 9
|
| 78 | 63, 77 | sylan 283 |
. . . . . . . 8
|
| 79 | 76, 7 | sylan2br 288 |
. . . . . . . . 9
|
| 80 | 63, 79 | sylan 283 |
. . . . . . . 8
|
| 81 | 78, 80 | eqeltrd 2281 |
. . . . . . 7
|
| 82 | 59, 61, 72, 75, 81 | seq3split 10631 |
. . . . . 6
|
| 83 | 78, 75, 80 | fsum3ser 11650 |
. . . . . . 7
|
| 84 | 69 | seqeq1d 10596 |
. . . . . . . 8
|
| 85 | 84 | fveq1d 5577 |
. . . . . . 7
|
| 86 | 83, 85 | oveq12d 5961 |
. . . . . 6
|
| 87 | 82, 86 | eqtr4d 2240 |
. . . . 5
|
| 88 | 87 | ex 115 |
. . . 4
|
| 89 | uzp1 9681 |
. . . . . 6
| |
| 90 | 3, 89 | syl 14 |
. . . . 5
|
| 91 | 90 | adantr 276 |
. . . 4
|
| 92 | 57, 88, 91 | mpjaod 719 |
. . 3
|
| 93 | 8, 10, 21, 28, 17, 31, 92 | climaddc2 11583 |
. 2
|
| 94 | 1, 5, 6, 7, 93 | isumclim 11674 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: isum1p 11745 geolim2 11765 mertenslem2 11789 mertensabs 11790 effsumlt 11945 eirraplem 12030 trilpolemeq1 15912 trilpolemlt1 15913 nconstwlpolemgt0 15936 |
| Copyright terms: Public domain | W3C validator |