| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumsplit | Unicode version | ||
| Description: Split off the first |
| Ref | Expression |
|---|---|
| isumsplit.1 |
|
| isumsplit.2 |
|
| isumsplit.3 |
|
| isumsplit.4 |
|
| isumsplit.5 |
|
| isumsplit.6 |
|
| Ref | Expression |
|---|---|
| isumsplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumsplit.1 |
. 2
| |
| 2 | isumsplit.3 |
. . . 4
| |
| 3 | 2, 1 | eleqtrdi 2299 |
. . 3
|
| 4 | eluzel2 9683 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | isumsplit.4 |
. 2
| |
| 7 | isumsplit.5 |
. 2
| |
| 8 | isumsplit.2 |
. . 3
| |
| 9 | eluzelz 9687 |
. . . 4
| |
| 10 | 3, 9 | syl 14 |
. . 3
|
| 11 | uzss 9699 |
. . . . . . . 8
| |
| 12 | 3, 11 | syl 14 |
. . . . . . 7
|
| 13 | 12, 8, 1 | 3sstr4g 3240 |
. . . . . 6
|
| 14 | 13 | sselda 3197 |
. . . . 5
|
| 15 | 14, 6 | syldan 282 |
. . . 4
|
| 16 | 14, 7 | syldan 282 |
. . . 4
|
| 17 | isumsplit.6 |
. . . . 5
| |
| 18 | 6, 7 | eqeltrd 2283 |
. . . . . 6
|
| 19 | 1, 2, 18 | iserex 11735 |
. . . . 5
|
| 20 | 17, 19 | mpbid 147 |
. . . 4
|
| 21 | 8, 10, 15, 16, 20 | isumclim2 11818 |
. . 3
|
| 22 | peano2zm 9440 |
. . . . . 6
| |
| 23 | 10, 22 | syl 14 |
. . . . 5
|
| 24 | 5, 23 | fzfigd 10608 |
. . . 4
|
| 25 | elfzuz 10173 |
. . . . . 6
| |
| 26 | 25, 1 | eleqtrrdi 2300 |
. . . . 5
|
| 27 | 26, 7 | sylan2 286 |
. . . 4
|
| 28 | 24, 27 | fsumcl 11796 |
. . 3
|
| 29 | 14, 18 | syldan 282 |
. . . . 5
|
| 30 | 8, 10, 29 | serf 10660 |
. . . 4
|
| 31 | 30 | ffvelcdmda 5733 |
. . 3
|
| 32 | 5 | zred 9525 |
. . . . . . . . . . . 12
|
| 33 | 32 | ltm1d 9035 |
. . . . . . . . . . 11
|
| 34 | peano2zm 9440 |
. . . . . . . . . . . . 13
| |
| 35 | 5, 34 | syl 14 |
. . . . . . . . . . . 12
|
| 36 | fzn 10194 |
. . . . . . . . . . . 12
| |
| 37 | 5, 35, 36 | syl2anc 411 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | mpbid 147 |
. . . . . . . . . 10
|
| 39 | 38 | sumeq1d 11762 |
. . . . . . . . 9
|
| 40 | 39 | adantr 276 |
. . . . . . . 8
|
| 41 | sum0 11784 |
. . . . . . . 8
| |
| 42 | 40, 41 | eqtrdi 2255 |
. . . . . . 7
|
| 43 | 42 | oveq1d 5977 |
. . . . . 6
|
| 44 | 13 | sselda 3197 |
. . . . . . . 8
|
| 45 | 1, 5, 18 | serf 10660 |
. . . . . . . . 9
|
| 46 | 45 | ffvelcdmda 5733 |
. . . . . . . 8
|
| 47 | 44, 46 | syldan 282 |
. . . . . . 7
|
| 48 | 47 | addlidd 8252 |
. . . . . 6
|
| 49 | 43, 48 | eqtr2d 2240 |
. . . . 5
|
| 50 | oveq1 5969 |
. . . . . . . . 9
| |
| 51 | 50 | oveq2d 5978 |
. . . . . . . 8
|
| 52 | 51 | sumeq1d 11762 |
. . . . . . 7
|
| 53 | seqeq1 10627 |
. . . . . . . 8
| |
| 54 | 53 | fveq1d 5596 |
. . . . . . 7
|
| 55 | 52, 54 | oveq12d 5980 |
. . . . . 6
|
| 56 | 55 | eqeq2d 2218 |
. . . . 5
|
| 57 | 49, 56 | syl5ibrcom 157 |
. . . 4
|
| 58 | addcl 8080 |
. . . . . . . 8
| |
| 59 | 58 | adantl 277 |
. . . . . . 7
|
| 60 | addass 8085 |
. . . . . . . 8
| |
| 61 | 60 | adantl 277 |
. . . . . . 7
|
| 62 | simplr 528 |
. . . . . . . 8
| |
| 63 | simpll 527 |
. . . . . . . . . . 11
| |
| 64 | 10 | zcnd 9526 |
. . . . . . . . . . . . 13
|
| 65 | ax-1cn 8048 |
. . . . . . . . . . . . 13
| |
| 66 | npcan 8311 |
. . . . . . . . . . . . 13
| |
| 67 | 64, 65, 66 | sylancl 413 |
. . . . . . . . . . . 12
|
| 68 | 67 | eqcomd 2212 |
. . . . . . . . . . 11
|
| 69 | 63, 68 | syl 14 |
. . . . . . . . . 10
|
| 70 | 69 | fveq2d 5598 |
. . . . . . . . 9
|
| 71 | 8, 70 | eqtrid 2251 |
. . . . . . . 8
|
| 72 | 62, 71 | eleqtrd 2285 |
. . . . . . 7
|
| 73 | 5 | adantr 276 |
. . . . . . . 8
|
| 74 | eluzp1m1 9702 |
. . . . . . . 8
| |
| 75 | 73, 74 | sylan 283 |
. . . . . . 7
|
| 76 | 1 | eleq2i 2273 |
. . . . . . . . . 10
|
| 77 | 76, 6 | sylan2br 288 |
. . . . . . . . 9
|
| 78 | 63, 77 | sylan 283 |
. . . . . . . 8
|
| 79 | 76, 7 | sylan2br 288 |
. . . . . . . . 9
|
| 80 | 63, 79 | sylan 283 |
. . . . . . . 8
|
| 81 | 78, 80 | eqeltrd 2283 |
. . . . . . 7
|
| 82 | 59, 61, 72, 75, 81 | seq3split 10665 |
. . . . . 6
|
| 83 | 78, 75, 80 | fsum3ser 11793 |
. . . . . . 7
|
| 84 | 69 | seqeq1d 10630 |
. . . . . . . 8
|
| 85 | 84 | fveq1d 5596 |
. . . . . . 7
|
| 86 | 83, 85 | oveq12d 5980 |
. . . . . 6
|
| 87 | 82, 86 | eqtr4d 2242 |
. . . . 5
|
| 88 | 87 | ex 115 |
. . . 4
|
| 89 | uzp1 9712 |
. . . . . 6
| |
| 90 | 3, 89 | syl 14 |
. . . . 5
|
| 91 | 90 | adantr 276 |
. . . 4
|
| 92 | 57, 88, 91 | mpjaod 720 |
. . 3
|
| 93 | 8, 10, 21, 28, 17, 31, 92 | climaddc2 11726 |
. 2
|
| 94 | 1, 5, 6, 7, 93 | isumclim 11817 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-ihash 10953 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 |
| This theorem is referenced by: isum1p 11888 geolim2 11908 mertenslem2 11932 mertensabs 11933 effsumlt 12088 eirraplem 12173 trilpolemeq1 16151 trilpolemlt1 16152 nconstwlpolemgt0 16175 |
| Copyright terms: Public domain | W3C validator |