ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5nn Unicode version

Theorem 5nn 9275
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
5nn  |-  5  e.  NN

Proof of Theorem 5nn
StepHypRef Expression
1 df-5 9172 . 2  |-  5  =  ( 4  +  1 )
2 4nn 9274 . . 3  |-  4  e.  NN
3 peano2nn 9122 . . 3  |-  ( 4  e.  NN  ->  (
4  +  1 )  e.  NN )
42, 3ax-mp 5 . 2  |-  ( 4  +  1 )  e.  NN
51, 4eqeltri 2302 1  |-  5  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2200  (class class class)co 6001   1c1 8000    + caddc 8002   NNcn 9110   4c4 9163   5c5 9164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172
This theorem is referenced by:  6nn  9276  5nn0  9389  5ndvds3  12445  5ndvds6  12446  prm23ge5  12787  dec5dvds  12935  dec5nprm  12937  dec2nprm  12938  scandx  13184  scaid  13185  scaslid  13186  lmodstrd  13197  ipsstrd  13209  ccondx  13269  ccoid  13270  ccoslid  13271  prdsvalstrd  13304  psrvalstrd  14632  lgsdir2lem1  15707  lgsdir2lem3  15709
  Copyright terms: Public domain W3C validator