Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5nn | Unicode version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8929 | . 2 | |
2 | 4nn 9030 | . . 3 | |
3 | peano2nn 8879 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqeltri 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 (class class class)co 5851 c1 7764 caddc 7766 cn 8867 c4 8920 c5 8921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7854 ax-resscn 7855 ax-1re 7857 ax-addrcl 7860 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5854 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-5 8929 |
This theorem is referenced by: 6nn 9032 5nn0 9144 prm23ge5 12207 scandx 12534 scaid 12535 scaslid 12536 lmodstrd 12540 ipsstrd 12548 lgsdir2lem1 13684 lgsdir2lem3 13686 |
Copyright terms: Public domain | W3C validator |