| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 5nn | Unicode version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| 5nn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-5 9052 | 
. 2
 | |
| 2 | 4nn 9154 | 
. . 3
 | |
| 3 | peano2nn 9002 | 
. . 3
 | |
| 4 | 2, 3 | ax-mp 5 | 
. 2
 | 
| 5 | 1, 4 | eqeltri 2269 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 | 
| This theorem is referenced by: 6nn 9156 5nn0 9269 5ndvds3 12099 5ndvds6 12100 prm23ge5 12433 dec5dvds 12581 dec5nprm 12583 dec2nprm 12584 scandx 12828 scaid 12829 scaslid 12830 lmodstrd 12841 ipsstrd 12853 ccoid 12908 ccoslid 12909 psrvalstrd 14222 lgsdir2lem1 15269 lgsdir2lem3 15271 | 
| Copyright terms: Public domain | W3C validator |