Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5nn | Unicode version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8915 | . 2 | |
2 | 4nn 9016 | . . 3 | |
3 | peano2nn 8865 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqeltri 2238 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 (class class class)co 5841 c1 7750 caddc 7752 cn 8853 c4 8906 c5 8907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 |
This theorem is referenced by: 6nn 9018 5nn0 9130 prm23ge5 12192 scandx 12517 scaid 12518 scaslid 12519 lmodstrd 12523 ipsstrd 12531 lgsdir2lem1 13529 lgsdir2lem3 13531 |
Copyright terms: Public domain | W3C validator |