| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaslid | Unicode version | ||
| Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| scaslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sca 13000 |
. 2
| |
| 2 | 5nn 9221 |
. 2
| |
| 3 | 1, 2 | ndxslid 12932 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-ndx 12910 df-slot 12911 df-sca 13000 |
| This theorem is referenced by: lmodscad 13074 ipsscad 13087 ressscag 13090 prdsex 13176 prdsval 13180 prdssca 13182 pwsval 13198 pwsbas 13199 pwsplusgval 13202 pwsmulrval 13203 xpsval 13259 pwsmnd 13357 pws0g 13358 pwsgrp 13518 pwsinvg 13519 mgpscag 13764 islmod 14128 scaffvalg 14143 rmodislmod 14188 sraval 14274 sralemg 14275 srascag 14279 sravscag 14280 sraipg 14281 sraex 14283 zlmval 14464 zlmlemg 14465 zlmsca 14469 zlmvscag 14470 psrval 14503 fnpsr 14504 |
| Copyright terms: Public domain | W3C validator |