| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaslid | Unicode version | ||
| Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| scaslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sca 13121 |
. 2
| |
| 2 | 5nn 9271 |
. 2
| |
| 3 | 1, 2 | ndxslid 13052 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-ndx 13030 df-slot 13031 df-sca 13121 |
| This theorem is referenced by: lmodscad 13195 ipsscad 13208 ressscag 13211 prdsex 13297 prdsval 13301 prdssca 13303 pwsval 13319 pwsbas 13320 pwsplusgval 13323 pwsmulrval 13324 xpsval 13380 pwsmnd 13478 pws0g 13479 pwsgrp 13639 pwsinvg 13640 mgpscag 13885 islmod 14249 scaffvalg 14264 rmodislmod 14309 sraval 14395 sralemg 14396 srascag 14400 sravscag 14401 sraipg 14402 sraex 14404 zlmval 14585 zlmlemg 14586 zlmsca 14590 zlmvscag 14591 psrval 14624 fnpsr 14625 |
| Copyright terms: Public domain | W3C validator |