ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsstrd Unicode version

Theorem ipsstrd 12139
Description: A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
ipsstrd.b  |-  ( ph  ->  B  e.  V )
ipsstrd.p  |-  ( ph  ->  .+  e.  W )
ipsstrd.r  |-  ( ph  ->  .X.  e.  X )
ipsstrd.s  |-  ( ph  ->  S  e.  Y )
ipsstrd.x  |-  ( ph  ->  .x.  e.  Q )
ipsstrd.i  |-  ( ph  ->  I  e.  Z )
Assertion
Ref Expression
ipsstrd  |-  ( ph  ->  A Struct  <. 1 ,  8
>. )

Proof of Theorem ipsstrd
StepHypRef Expression
1 ipspart.a . 2  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
2 ipsstrd.b . . . 4  |-  ( ph  ->  B  e.  V )
3 ipsstrd.p . . . 4  |-  ( ph  ->  .+  e.  W )
4 ipsstrd.r . . . 4  |-  ( ph  ->  .X.  e.  X )
5 eqid 2140 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }
65rngstrg 12113 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W  /\  .X.  e.  X )  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. } Struct  <. 1 ,  3 >. )
72, 3, 4, 6syl3anc 1217 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. } Struct  <. 1 ,  3 >. )
8 ipsstrd.s . . . 4  |-  ( ph  ->  S  e.  Y )
9 ipsstrd.x . . . 4  |-  ( ph  ->  .x.  e.  Q )
10 ipsstrd.i . . . 4  |-  ( ph  ->  I  e.  Z )
11 5nn 8908 . . . . 5  |-  5  e.  NN
12 scandx 12125 . . . . 5  |-  (Scalar `  ndx )  =  5
13 5lt6 8923 . . . . 5  |-  5  <  6
14 6nn 8909 . . . . 5  |-  6  e.  NN
15 vscandx 12128 . . . . 5  |-  ( .s
`  ndx )  =  6
16 6lt8 8935 . . . . 5  |-  6  <  8
17 8nn 8911 . . . . 5  |-  8  e.  NN
18 ipndx 12136 . . . . 5  |-  ( .i
`  ndx )  =  8
1911, 12, 13, 14, 15, 16, 17, 18strle3g 12090 . . . 4  |-  ( ( S  e.  Y  /\  .x. 
e.  Q  /\  I  e.  Z )  ->  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } Struct  <. 5 ,  8 >. )
208, 9, 10, 19syl3anc 1217 . . 3  |-  ( ph  ->  { <. (Scalar `  ndx ) ,  S >. , 
<. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } Struct  <. 5 ,  8 >. )
21 3lt5 8920 . . . 4  |-  3  <  5
2221a1i 9 . . 3  |-  ( ph  ->  3  <  5 )
237, 20, 22strleund 12086 . 2  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } ) Struct  <. 1 ,  8 >. )
241, 23eqbrtrid 3971 1  |-  ( ph  ->  A Struct  <. 1 ,  8
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481    u. cun 3074   {ctp 3534   <.cop 3535   class class class wbr 3937   ` cfv 5131   1c1 7645    < clt 7824   3c3 8796   5c5 8798   6c6 8799   8c8 8801   Struct cstr 11994   ndxcnx 11995   Basecbs 11998   +g cplusg 12060   .rcmulr 12061  Scalarcsca 12063   .scvsca 12064   .icip 12065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-tp 3540  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-struct 12000  df-ndx 12001  df-slot 12002  df-base 12004  df-plusg 12073  df-mulr 12074  df-sca 12076  df-vsca 12077  df-ip 12078
This theorem is referenced by:  ipsbased  12140  ipsaddgd  12141  ipsmulrd  12142  ipsscad  12143  ipsvscad  12144  ipsipd  12145
  Copyright terms: Public domain W3C validator