| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn | Unicode version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 9134 |
. 2
| |
| 2 | 5nn 9236 |
. . 3
| |
| 3 | peano2nn 9083 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 |
| This theorem is referenced by: 7nn 9238 6nn0 9351 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 6gcd4e2 12431 6lcm4e12 12524 vscandx 13104 vscaid 13105 vscaslid 13110 lmodstrd 13111 ipsstrd 13123 psrvalstrd 14545 sincos3rdpi 15430 pigt3 15431 ex-dvds 15866 ex-gcd 15867 |
| Copyright terms: Public domain | W3C validator |