| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | Unicode version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9099 |
. 2
| |
| 2 | 3nn 9201 |
. . 3
| |
| 3 | peano2nn 9050 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 |
| This theorem is referenced by: 5nn 9203 4nn0 9316 4z 9404 fldiv4p1lem1div2 10450 fldiv4lem1div2uz2 10451 fldiv4lem1div2 10452 iexpcyc 10791 resqrexlemnmsq 11361 ef01bndlem 12100 flodddiv4 12280 flodddiv4t2lthalf 12283 6lcm4e12 12442 2expltfac 12795 starvndx 13004 starvid 13005 starvslid 13006 srngstrd 13011 homndx 13098 homid 13099 homslid 13100 prdsvalstrd 13136 dveflem 15231 tan4thpi 15346 gausslemma2dlem0d 15562 gausslemma2dlem3 15573 gausslemma2dlem4 15574 gausslemma2dlem5a 15575 gausslemma2dlem5 15576 gausslemma2dlem6 15577 m1lgs 15595 2lgslem1a2 15597 2lgslem1a 15598 2lgslem1 15601 2lgslem2 15602 2lgslem3a 15603 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 |
| Copyright terms: Public domain | W3C validator |