Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4nn | Unicode version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8951 | . 2 | |
2 | 3nn 9052 | . . 3 | |
3 | peano2nn 8902 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqeltri 2248 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 (class class class)co 5865 c1 7787 caddc 7789 cn 8890 c3 8942 c4 8943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 |
This theorem is referenced by: 5nn 9054 4nn0 9166 4z 9254 fldiv4p1lem1div2 10273 iexpcyc 10592 resqrexlemnmsq 10992 ef01bndlem 11730 flodddiv4 11904 flodddiv4t2lthalf 11907 6lcm4e12 12052 starvndx 12548 starvid 12549 starvslid 12550 srngstrd 12551 dveflem 13756 tan4thpi 13831 |
Copyright terms: Public domain | W3C validator |