| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | Unicode version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9132 |
. 2
| |
| 2 | 3nn 9234 |
. . 3
| |
| 3 | peano2nn 9083 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 |
| This theorem is referenced by: 5nn 9236 4nn0 9349 4z 9437 fldiv4p1lem1div2 10485 fldiv4lem1div2uz2 10486 fldiv4lem1div2 10487 iexpcyc 10826 resqrexlemnmsq 11443 ef01bndlem 12182 flodddiv4 12362 flodddiv4t2lthalf 12365 6lcm4e12 12524 2expltfac 12877 starvndx 13086 starvid 13087 starvslid 13088 srngstrd 13093 homndx 13180 homid 13181 homslid 13182 prdsvalstrd 13218 dveflem 15313 tan4thpi 15428 gausslemma2dlem0d 15644 gausslemma2dlem3 15655 gausslemma2dlem4 15656 gausslemma2dlem5a 15657 gausslemma2dlem5 15658 gausslemma2dlem6 15659 m1lgs 15677 2lgslem1a2 15679 2lgslem1a 15680 2lgslem1 15683 2lgslem2 15684 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 |
| Copyright terms: Public domain | W3C validator |