| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | Unicode version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9171 |
. 2
| |
| 2 | 3nn 9273 |
. . 3
| |
| 3 | peano2nn 9122 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 |
| This theorem is referenced by: 5nn 9275 4nn0 9388 4z 9476 fldiv4p1lem1div2 10525 fldiv4lem1div2uz2 10526 fldiv4lem1div2 10527 iexpcyc 10866 resqrexlemnmsq 11528 ef01bndlem 12267 flodddiv4 12447 flodddiv4t2lthalf 12450 6lcm4e12 12609 2expltfac 12962 starvndx 13172 starvid 13173 starvslid 13174 srngstrd 13179 homndx 13266 homid 13267 homslid 13268 prdsvalstrd 13304 dveflem 15400 tan4thpi 15515 gausslemma2dlem0d 15731 gausslemma2dlem3 15742 gausslemma2dlem4 15743 gausslemma2dlem5a 15744 gausslemma2dlem5 15745 gausslemma2dlem6 15746 m1lgs 15764 2lgslem1a2 15766 2lgslem1a 15767 2lgslem1 15770 2lgslem2 15771 2lgslem3a 15772 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 |
| Copyright terms: Public domain | W3C validator |