| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | Unicode version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9097 |
. 2
| |
| 2 | 3nn 9199 |
. . 3
| |
| 3 | peano2nn 9048 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 |
| This theorem is referenced by: 5nn 9201 4nn0 9314 4z 9402 fldiv4p1lem1div2 10448 fldiv4lem1div2uz2 10449 fldiv4lem1div2 10450 iexpcyc 10789 resqrexlemnmsq 11328 ef01bndlem 12067 flodddiv4 12247 flodddiv4t2lthalf 12250 6lcm4e12 12409 2expltfac 12762 starvndx 12971 starvid 12972 starvslid 12973 srngstrd 12978 homndx 13065 homid 13066 homslid 13067 prdsvalstrd 13103 dveflem 15198 tan4thpi 15313 gausslemma2dlem0d 15529 gausslemma2dlem3 15540 gausslemma2dlem4 15541 gausslemma2dlem5a 15542 gausslemma2dlem5 15543 gausslemma2dlem6 15544 m1lgs 15562 2lgslem1a2 15564 2lgslem1a 15565 2lgslem1 15568 2lgslem2 15569 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 |
| Copyright terms: Public domain | W3C validator |