| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | Unicode version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9068 |
. 2
| |
| 2 | 3nn 9170 |
. . 3
| |
| 3 | peano2nn 9019 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 |
| This theorem is referenced by: 5nn 9172 4nn0 9285 4z 9373 fldiv4p1lem1div2 10412 fldiv4lem1div2uz2 10413 fldiv4lem1div2 10414 iexpcyc 10753 resqrexlemnmsq 11199 ef01bndlem 11938 flodddiv4 12118 flodddiv4t2lthalf 12121 6lcm4e12 12280 2expltfac 12633 starvndx 12841 starvid 12842 starvslid 12843 srngstrd 12848 homndx 12935 homid 12936 homslid 12937 prdsvalstrd 12973 dveflem 15046 tan4thpi 15161 gausslemma2dlem0d 15377 gausslemma2dlem3 15388 gausslemma2dlem4 15389 gausslemma2dlem5a 15390 gausslemma2dlem5 15391 gausslemma2dlem6 15392 m1lgs 15410 2lgslem1a2 15412 2lgslem1a 15413 2lgslem1 15416 2lgslem2 15417 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 |
| Copyright terms: Public domain | W3C validator |