| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | Unicode version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9054 |
. 2
| |
| 2 | 3nn 9156 |
. . 3
| |
| 3 | peano2nn 9005 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7973 ax-resscn 7974 ax-1re 7976 ax-addrcl 7979 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 |
| This theorem is referenced by: 5nn 9158 4nn0 9271 4z 9359 fldiv4p1lem1div2 10398 fldiv4lem1div2uz2 10399 fldiv4lem1div2 10400 iexpcyc 10739 resqrexlemnmsq 11185 ef01bndlem 11924 flodddiv4 12104 flodddiv4t2lthalf 12107 6lcm4e12 12266 2expltfac 12619 starvndx 12827 starvid 12828 starvslid 12829 srngstrd 12834 homndx 12921 homid 12922 homslid 12923 prdsvalstrd 12959 dveflem 14988 tan4thpi 15103 gausslemma2dlem0d 15319 gausslemma2dlem3 15330 gausslemma2dlem4 15331 gausslemma2dlem5a 15332 gausslemma2dlem5 15333 gausslemma2dlem6 15334 m1lgs 15352 2lgslem1a2 15354 2lgslem1a 15355 2lgslem1 15358 2lgslem2 15359 2lgslem3a 15360 2lgslem3b 15361 2lgslem3c 15362 2lgslem3d 15363 |
| Copyright terms: Public domain | W3C validator |