ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodstrd Unicode version

Theorem lmodstrd 13071
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
lvecfn.w  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )
lmodstr.b  |-  ( ph  ->  B  e.  V )
lmodstr.g  |-  ( ph  ->  .+  e.  X )
lmodstr.s  |-  ( ph  ->  F  e.  Y )
lmodstr.m  |-  ( ph  ->  .x.  e.  Z )
Assertion
Ref Expression
lmodstrd  |-  ( ph  ->  W Struct  <. 1 ,  6
>. )

Proof of Theorem lmodstrd
StepHypRef Expression
1 lvecfn.w . 2  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )
2 lmodstr.b . . . 4  |-  ( ph  ->  B  e.  V )
3 lmodstr.g . . . 4  |-  ( ph  ->  .+  e.  X )
4 lmodstr.s . . . 4  |-  ( ph  ->  F  e.  Y )
5 1nn 9067 . . . . 5  |-  1  e.  NN
6 basendx 12962 . . . . 5  |-  ( Base `  ndx )  =  1
7 1lt2 9226 . . . . 5  |-  1  <  2
8 2nn 9218 . . . . 5  |-  2  e.  NN
9 plusgndx 13016 . . . . 5  |-  ( +g  ` 
ndx )  =  2
10 2lt5 9234 . . . . 5  |-  2  <  5
11 5nn 9221 . . . . 5  |-  5  e.  NN
12 scandx 13058 . . . . 5  |-  (Scalar `  ndx )  =  5
135, 6, 7, 8, 9, 10, 11, 12strle3g 13015 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  X  /\  F  e.  Y )  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. } Struct  <. 1 ,  5
>. )
142, 3, 4, 13syl3anc 1250 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. } Struct  <. 1 ,  5
>. )
15 lmodstr.m . . . 4  |-  ( ph  ->  .x.  e.  Z )
16 6nn 9222 . . . . 5  |-  6  e.  NN
17 vscandx 13064 . . . . 5  |-  ( .s
`  ndx )  =  6
1816, 17strle1g 13013 . . . 4  |-  (  .x.  e.  Z  ->  { <. ( .s `  ndx ) ,  .x.  >. } Struct  <. 6 ,  6 >. )
1915, 18syl 14 . . 3  |-  ( ph  ->  { <. ( .s `  ndx ) ,  .x.  >. } Struct  <. 6 ,  6 >. )
20 5lt6 9236 . . . 4  |-  5  <  6
2120a1i 9 . . 3  |-  ( ph  ->  5  <  6 )
2214, 19, 21strleund 13010 . 2  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } ) Struct  <. 1 ,  6 >. )
231, 22eqbrtrid 4086 1  |-  ( ph  ->  W Struct  <. 1 ,  6
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177    u. cun 3168   {csn 3638   {ctp 3640   <.cop 3641   class class class wbr 4051   ` cfv 5280   1c1 7946    < clt 8127   2c2 9107   5c5 9110   6c6 9111   Struct cstr 12903   ndxcnx 12904   Basecbs 12907   +g cplusg 12984  Scalarcsca 12987   .scvsca 12988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-struct 12909  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-sca 13000  df-vsca 13001
This theorem is referenced by:  lmodbased  13072  lmodplusgd  13073  lmodscad  13074  lmodvscad  13075
  Copyright terms: Public domain W3C validator