ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodstrd Unicode version

Theorem lmodstrd 12678
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
lvecfn.w  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )
lmodstr.b  |-  ( ph  ->  B  e.  V )
lmodstr.g  |-  ( ph  ->  .+  e.  X )
lmodstr.s  |-  ( ph  ->  F  e.  Y )
lmodstr.m  |-  ( ph  ->  .x.  e.  Z )
Assertion
Ref Expression
lmodstrd  |-  ( ph  ->  W Struct  <. 1 ,  6
>. )

Proof of Theorem lmodstrd
StepHypRef Expression
1 lvecfn.w . 2  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )
2 lmodstr.b . . . 4  |-  ( ph  ->  B  e.  V )
3 lmodstr.g . . . 4  |-  ( ph  ->  .+  e.  X )
4 lmodstr.s . . . 4  |-  ( ph  ->  F  e.  Y )
5 1nn 8961 . . . . 5  |-  1  e.  NN
6 basendx 12570 . . . . 5  |-  ( Base `  ndx )  =  1
7 1lt2 9119 . . . . 5  |-  1  <  2
8 2nn 9111 . . . . 5  |-  2  e.  NN
9 plusgndx 12624 . . . . 5  |-  ( +g  ` 
ndx )  =  2
10 2lt5 9127 . . . . 5  |-  2  <  5
11 5nn 9114 . . . . 5  |-  5  e.  NN
12 scandx 12665 . . . . 5  |-  (Scalar `  ndx )  =  5
135, 6, 7, 8, 9, 10, 11, 12strle3g 12623 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  X  /\  F  e.  Y )  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. } Struct  <. 1 ,  5
>. )
142, 3, 4, 13syl3anc 1249 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. } Struct  <. 1 ,  5
>. )
15 lmodstr.m . . . 4  |-  ( ph  ->  .x.  e.  Z )
16 6nn 9115 . . . . 5  |-  6  e.  NN
17 vscandx 12671 . . . . 5  |-  ( .s
`  ndx )  =  6
1816, 17strle1g 12621 . . . 4  |-  (  .x.  e.  Z  ->  { <. ( .s `  ndx ) ,  .x.  >. } Struct  <. 6 ,  6 >. )
1915, 18syl 14 . . 3  |-  ( ph  ->  { <. ( .s `  ndx ) ,  .x.  >. } Struct  <. 6 ,  6 >. )
20 5lt6 9129 . . . 4  |-  5  <  6
2120a1i 9 . . 3  |-  ( ph  ->  5  <  6 )
2214, 19, 21strleund 12618 . 2  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } ) Struct  <. 1 ,  6 >. )
231, 22eqbrtrid 4053 1  |-  ( ph  ->  W Struct  <. 1 ,  6
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    u. cun 3142   {csn 3607   {ctp 3609   <.cop 3610   class class class wbr 4018   ` cfv 5235   1c1 7843    < clt 8023   2c2 9001   5c5 9004   6c6 9005   Struct cstr 12511   ndxcnx 12512   Basecbs 12515   +g cplusg 12592  Scalarcsca 12595   .scvsca 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041  df-struct 12517  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-sca 12608  df-vsca 12609
This theorem is referenced by:  lmodbased  12679  lmodplusgd  12680  lmodscad  12681  lmodvscad  12682
  Copyright terms: Public domain W3C validator