![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5nn | GIF version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn | ⊢ 5 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 9044 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4nn 9145 | . . 3 ⊢ 4 ∈ ℕ | |
3 | peano2nn 8994 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 5 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5918 1c1 7873 + caddc 7875 ℕcn 8982 4c4 9035 5c5 9036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 |
This theorem is referenced by: 6nn 9147 5nn0 9260 prm23ge5 12402 scandx 12768 scaid 12769 scaslid 12770 lmodstrd 12781 ipsstrd 12793 ccoid 12848 ccoslid 12849 psrvalstrd 14154 lgsdir2lem1 15144 lgsdir2lem3 15146 |
Copyright terms: Public domain | W3C validator |