ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5nn GIF version

Theorem 5nn 9114
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
5nn 5 ∈ ℕ

Proof of Theorem 5nn
StepHypRef Expression
1 df-5 9012 . 2 5 = (4 + 1)
2 4nn 9113 . . 3 4 ∈ ℕ
3 peano2nn 8962 . . 3 (4 ∈ ℕ → (4 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (4 + 1) ∈ ℕ
51, 4eqeltri 2262 1 5 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2160  (class class class)co 5897  1c1 7843   + caddc 7845  cn 8950  4c4 9003  5c5 9004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5900  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012
This theorem is referenced by:  6nn  9115  5nn0  9227  prm23ge5  12299  scandx  12665  scaid  12666  scaslid  12667  lmodstrd  12678  ipsstrd  12690  ccoid  12745  ccoslid  12746  psrvalstrd  13963  lgsdir2lem1  14907  lgsdir2lem3  14909
  Copyright terms: Public domain W3C validator