ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5nn GIF version

Theorem 5nn 9083
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
5nn 5 ∈ ℕ

Proof of Theorem 5nn
StepHypRef Expression
1 df-5 8981 . 2 5 = (4 + 1)
2 4nn 9082 . . 3 4 ∈ ℕ
3 peano2nn 8931 . . 3 (4 ∈ ℕ → (4 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (4 + 1) ∈ ℕ
51, 4eqeltri 2250 1 5 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2148  (class class class)co 5875  1c1 7812   + caddc 7814  cn 8919  4c4 8972  5c5 8973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4122  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981
This theorem is referenced by:  6nn  9084  5nn0  9196  prm23ge5  12264  scandx  12609  scaid  12610  scaslid  12611  lmodstrd  12622  ipsstrd  12634  ccoid  12686  ccoslid  12687  lgsdir2lem1  14432  lgsdir2lem3  14434
  Copyright terms: Public domain W3C validator