![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5nn | GIF version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn | ⊢ 5 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 9012 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4nn 9113 | . . 3 ⊢ 4 ∈ ℕ | |
3 | peano2nn 8962 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2262 | 1 ⊢ 5 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 (class class class)co 5897 1c1 7843 + caddc 7845 ℕcn 8950 4c4 9003 5c5 9004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5900 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 |
This theorem is referenced by: 6nn 9115 5nn0 9227 prm23ge5 12299 scandx 12665 scaid 12666 scaslid 12667 lmodstrd 12678 ipsstrd 12690 ccoid 12745 ccoslid 12746 psrvalstrd 13963 lgsdir2lem1 14907 lgsdir2lem3 14909 |
Copyright terms: Public domain | W3C validator |