ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2 Unicode version

Theorem xp2 6228
Description: Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
xp2  |-  ( A  X.  B )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x
)  e.  B ) }
Distinct variable groups:    x, A    x, B

Proof of Theorem xp2
StepHypRef Expression
1 elxp7 6225 . . 3  |-  ( x  e.  ( A  X.  B )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x
)  e.  B ) ) )
21abbi2i 2308 . 2  |-  ( A  X.  B )  =  { x  |  ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  B ) ) }
3 df-rab 2481 . 2  |-  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x )  e.  B
) }  =  {
x  |  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  B ) ) }
42, 3eqtr4i 2217 1  |-  ( A  X.  B )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x
)  e.  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   {crab 2476   _Vcvv 2760    X. cxp 4658   ` cfv 5255   1stc1st 6193   2ndc2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6195  df-2nd 6196
This theorem is referenced by:  unielxp  6229
  Copyright terms: Public domain W3C validator