Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9t7e63 | Unicode version |
Description: 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t7e63 | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 9097 | . 2 | |
2 | 6nn0 9094 | . 2 | |
3 | df-7 8880 | . 2 | |
4 | 9t6e54 9403 | . 2 ; | |
5 | 5nn0 9093 | . . 3 | |
6 | 4nn0 9092 | . . 3 | |
7 | eqid 2157 | . . 3 ; ; | |
8 | 5p1e6 8953 | . . 3 | |
9 | 3nn0 9091 | . . 3 | |
10 | 1 | nn0cni 9085 | . . . 4 |
11 | 6 | nn0cni 9085 | . . . 4 |
12 | 9p4e13 9366 | . . . 4 ; | |
13 | 10, 11, 12 | addcomli 8003 | . . 3 ; |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 9338 | . 2 ; ; |
15 | 1, 2, 3, 4, 14 | 4t3lem 9374 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wceq 1335 (class class class)co 5818 c1 7716 cmul 7720 c3 8868 c4 8869 c5 8870 c6 8871 c7 8872 c9 8874 ;cdc 9278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-5 8878 df-6 8879 df-7 8880 df-8 8881 df-9 8882 df-n0 9074 df-dec 9279 |
This theorem is referenced by: 9t8e72 9405 |
Copyright terms: Public domain | W3C validator |