ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8t4e32 Unicode version

Theorem 8t4e32 9530
Description: 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
8t4e32  |-  ( 8  x.  4 )  = ; 3
2

Proof of Theorem 8t4e32
StepHypRef Expression
1 8nn0 9229 . 2  |-  8  e.  NN0
2 3nn0 9224 . 2  |-  3  e.  NN0
3 df-4 9010 . 2  |-  4  =  ( 3  +  1 )
4 8t3e24 9529 . 2  |-  ( 8  x.  3 )  = ; 2
4
5 2nn0 9223 . . 3  |-  2  e.  NN0
6 4nn0 9225 . . 3  |-  4  e.  NN0
7 eqid 2189 . . 3  |- ; 2 4  = ; 2 4
8 2p1e3 9082 . . 3  |-  ( 2  +  1 )  =  3
91nn0cni 9218 . . . 4  |-  8  e.  CC
106nn0cni 9218 . . . 4  |-  4  e.  CC
11 8p4e12 9495 . . . 4  |-  ( 8  +  4 )  = ; 1
2
129, 10, 11addcomli 8132 . . 3  |-  ( 4  +  8 )  = ; 1
2
135, 6, 1, 7, 8, 5, 12decaddci 9474 . 2  |-  (; 2 4  +  8 )  = ; 3 2
141, 2, 3, 4, 134t3lem 9510 1  |-  ( 8  x.  4 )  = ; 3
2
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5896   1c1 7842    x. cmul 7846   2c2 9000   3c3 9001   4c4 9002   8c8 9006  ;cdc 9414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-sub 8160  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-9 9015  df-n0 9207  df-dec 9415
This theorem is referenced by:  8t5e40  9531
  Copyright terms: Public domain W3C validator