| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version | ||
| Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| Ref | Expression |
|---|---|
| peano2z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9411 |
. . 3
| |
| 2 | 1red 8122 |
. . 3
| |
| 3 | 1, 2 | readdcld 8137 |
. 2
|
| 4 | elznn0nn 9421 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 1 | biantrurd 305 |
. . . . 5
|
| 7 | 6 | orbi2d 792 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | peano2nn0 9370 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 1 | adantr 276 |
. . . . . . . . 9
|
| 12 | 1red 8122 |
. . . . . . . . 9
| |
| 13 | 11, 12 | readdcld 8137 |
. . . . . . . 8
|
| 14 | 13 | renegcld 8487 |
. . . . . . 7
|
| 15 | 14 | recnd 8136 |
. . . . . 6
|
| 16 | 11 | recnd 8136 |
. . . . . . . . . . . 12
|
| 17 | 1cnd 8123 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | negdid 8431 |
. . . . . . . . . . 11
|
| 19 | 18 | oveq1d 5982 |
. . . . . . . . . 10
|
| 20 | 16 | negcld 8405 |
. . . . . . . . . . 11
|
| 21 | neg1cn 9176 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 20, 22, 17 | addassd 8130 |
. . . . . . . . . 10
|
| 24 | 19, 23 | eqtrd 2240 |
. . . . . . . . 9
|
| 25 | ax-1cn 8053 |
. . . . . . . . . . 11
| |
| 26 | 1pneg1e0 9182 |
. . . . . . . . . . 11
| |
| 27 | 25, 21, 26 | addcomli 8252 |
. . . . . . . . . 10
|
| 28 | 27 | oveq2i 5978 |
. . . . . . . . 9
|
| 29 | 24, 28 | eqtrdi 2256 |
. . . . . . . 8
|
| 30 | 20 | addridd 8256 |
. . . . . . . 8
|
| 31 | 29, 30 | eqtrd 2240 |
. . . . . . 7
|
| 32 | simpr 110 |
. . . . . . 7
| |
| 33 | 31, 32 | eqeltrd 2284 |
. . . . . 6
|
| 34 | elnn0nn 9372 |
. . . . . 6
| |
| 35 | 15, 33, 34 | sylanbrc 417 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 10, 36 | orim12d 788 |
. . 3
|
| 38 | 8, 37 | mpd 13 |
. 2
|
| 39 | elznn0 9422 |
. 2
| |
| 40 | 3, 38, 39 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: zaddcllempos 9444 peano2zm 9445 zleltp1 9463 btwnnz 9502 peano2uz2 9515 uzind 9519 uzind2 9520 peano2zd 9533 eluzp1m1 9707 eluzp1p1 9709 peano2uz 9739 zltaddlt1le 10164 fzp1disj 10237 elfzp1b 10254 fzneuz 10258 fzp1nel 10261 fzval3 10370 fzossfzop1 10378 rebtwn2zlemstep 10432 flhalf 10482 frec2uzsucd 10583 zesq 10840 hashfzp1 11006 odd2np1lem 12298 odd2np1 12299 mulsucdiv2z 12311 oddp1d2 12316 zob 12317 ltoddhalfle 12319 fldivp1 12786 lgsdir2lem2 15621 |
| Copyright terms: Public domain | W3C validator |