| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version | ||
| Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| Ref | Expression |
|---|---|
| peano2z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9376 |
. . 3
| |
| 2 | 1red 8087 |
. . 3
| |
| 3 | 1, 2 | readdcld 8102 |
. 2
|
| 4 | elznn0nn 9386 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 1 | biantrurd 305 |
. . . . 5
|
| 7 | 6 | orbi2d 792 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | peano2nn0 9335 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 1 | adantr 276 |
. . . . . . . . 9
|
| 12 | 1red 8087 |
. . . . . . . . 9
| |
| 13 | 11, 12 | readdcld 8102 |
. . . . . . . 8
|
| 14 | 13 | renegcld 8452 |
. . . . . . 7
|
| 15 | 14 | recnd 8101 |
. . . . . 6
|
| 16 | 11 | recnd 8101 |
. . . . . . . . . . . 12
|
| 17 | 1cnd 8088 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | negdid 8396 |
. . . . . . . . . . 11
|
| 19 | 18 | oveq1d 5959 |
. . . . . . . . . 10
|
| 20 | 16 | negcld 8370 |
. . . . . . . . . . 11
|
| 21 | neg1cn 9141 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 20, 22, 17 | addassd 8095 |
. . . . . . . . . 10
|
| 24 | 19, 23 | eqtrd 2238 |
. . . . . . . . 9
|
| 25 | ax-1cn 8018 |
. . . . . . . . . . 11
| |
| 26 | 1pneg1e0 9147 |
. . . . . . . . . . 11
| |
| 27 | 25, 21, 26 | addcomli 8217 |
. . . . . . . . . 10
|
| 28 | 27 | oveq2i 5955 |
. . . . . . . . 9
|
| 29 | 24, 28 | eqtrdi 2254 |
. . . . . . . 8
|
| 30 | 20 | addridd 8221 |
. . . . . . . 8
|
| 31 | 29, 30 | eqtrd 2238 |
. . . . . . 7
|
| 32 | simpr 110 |
. . . . . . 7
| |
| 33 | 31, 32 | eqeltrd 2282 |
. . . . . 6
|
| 34 | elnn0nn 9337 |
. . . . . 6
| |
| 35 | 15, 33, 34 | sylanbrc 417 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 10, 36 | orim12d 788 |
. . 3
|
| 38 | 8, 37 | mpd 13 |
. 2
|
| 39 | elznn0 9387 |
. 2
| |
| 40 | 3, 38, 39 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: zaddcllempos 9409 peano2zm 9410 zleltp1 9428 btwnnz 9467 peano2uz2 9480 uzind 9484 uzind2 9485 peano2zd 9498 eluzp1m1 9672 eluzp1p1 9674 peano2uz 9704 zltaddlt1le 10129 fzp1disj 10202 elfzp1b 10219 fzneuz 10223 fzp1nel 10226 fzval3 10333 fzossfzop1 10341 rebtwn2zlemstep 10395 flhalf 10445 frec2uzsucd 10546 zesq 10803 hashfzp1 10969 odd2np1lem 12183 odd2np1 12184 mulsucdiv2z 12196 oddp1d2 12201 zob 12202 ltoddhalfle 12204 fldivp1 12671 lgsdir2lem2 15506 |
| Copyright terms: Public domain | W3C validator |