ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2z Unicode version

Theorem peano2z 9303
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )

Proof of Theorem peano2z
StepHypRef Expression
1 zre 9271 . . 3  |-  ( N  e.  ZZ  ->  N  e.  RR )
2 1red 7986 . . 3  |-  ( N  e.  ZZ  ->  1  e.  RR )
31, 2readdcld 8001 . 2  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  RR )
4 elznn0nn 9281 . . . . 5  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
54biimpi 120 . . . 4  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
61biantrurd 305 . . . . 5  |-  ( N  e.  ZZ  ->  ( -u N  e.  NN  <->  ( N  e.  RR  /\  -u N  e.  NN ) ) )
76orbi2d 791 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  e.  NN0  \/  -u N  e.  NN ) 
<->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) ) )
85, 7mpbird 167 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN ) )
9 peano2nn0 9230 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
109a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN0 ) )
111adantr 276 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  N  e.  RR )
12 1red 7986 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  1  e.  RR )
1311, 12readdcld 8001 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( N  + 
1 )  e.  RR )
1413renegcld 8351 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  RR )
1514recnd 8000 . . . . . 6  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  CC )
1611recnd 8000 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  N  e.  CC )
17 1cnd 7987 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  1  e.  CC )
1816, 17negdid 8295 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  =  (
-u N  +  -u
1 ) )
1918oveq1d 5903 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( ( -u N  +  -u 1 )  +  1 ) )
2016negcld 8269 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u N  e.  CC )
21 neg1cn 9038 . . . . . . . . . . . 12  |-  -u 1  e.  CC
2221a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u 1  e.  CC )
2320, 22, 17addassd 7994 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( ( -u N  +  -u 1 )  +  1 )  =  ( -u N  +  ( -u 1  +  1 ) ) )
2419, 23eqtrd 2220 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( -u N  +  ( -u 1  +  1 ) ) )
25 ax-1cn 7918 . . . . . . . . . . 11  |-  1  e.  CC
26 1pneg1e0 9044 . . . . . . . . . . 11  |-  ( 1  +  -u 1 )  =  0
2725, 21, 26addcomli 8116 . . . . . . . . . 10  |-  ( -u
1  +  1 )  =  0
2827oveq2i 5899 . . . . . . . . 9  |-  ( -u N  +  ( -u 1  +  1 ) )  =  ( -u N  +  0 )
2924, 28eqtrdi 2236 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( -u N  + 
0 ) )
3020addid1d 8120 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u N  +  0 )  = 
-u N )
3129, 30eqtrd 2220 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  = 
-u N )
32 simpr 110 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u N  e.  NN )
3331, 32eqeltrd 2264 . . . . . 6  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  e.  NN )
34 elnn0nn 9232 . . . . . 6  |-  ( -u ( N  +  1
)  e.  NN0  <->  ( -u ( N  +  1 )  e.  CC  /\  ( -u ( N  +  1 )  +  1 )  e.  NN ) )
3515, 33, 34sylanbrc 417 . . . . 5  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  NN0 )
3635ex 115 . . . 4  |-  ( N  e.  ZZ  ->  ( -u N  e.  NN  ->  -u ( N  +  1
)  e.  NN0 )
)
3710, 36orim12d 787 . . 3  |-  ( N  e.  ZZ  ->  (
( N  e.  NN0  \/  -u N  e.  NN )  ->  ( ( N  +  1 )  e. 
NN0  \/  -u ( N  +  1 )  e. 
NN0 ) ) )
388, 37mpd 13 . 2  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  e.  NN0  \/  -u ( N  +  1 )  e.  NN0 )
)
39 elznn0 9282 . 2  |-  ( ( N  +  1 )  e.  ZZ  <->  ( ( N  +  1 )  e.  RR  /\  (
( N  +  1 )  e.  NN0  \/  -u ( N  +  1 )  e.  NN0 )
) )
403, 38, 39sylanbrc 417 1  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    e. wcel 2158  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826    + caddc 7828   -ucneg 8143   NNcn 8933   NN0cn0 9190   ZZcz 9267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268
This theorem is referenced by:  zaddcllempos  9304  peano2zm  9305  zleltp1  9322  btwnnz  9361  peano2uz2  9374  uzind  9378  uzind2  9379  peano2zd  9392  eluzp1m1  9565  eluzp1p1  9567  peano2uz  9597  zltaddlt1le  10021  fzp1disj  10094  elfzp1b  10111  fzneuz  10115  fzp1nel  10118  fzval3  10218  fzossfzop1  10226  rebtwn2zlemstep  10267  flhalf  10316  frec2uzsucd  10415  zesq  10653  hashfzp1  10818  odd2np1lem  11891  odd2np1  11892  mulsucdiv2z  11904  oddp1d2  11909  zob  11910  ltoddhalfle  11912  fldivp1  12360  lgsdir2lem2  14726
  Copyright terms: Public domain W3C validator