| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version | ||
| Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| Ref | Expression |
|---|---|
| peano2z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9378 |
. . 3
| |
| 2 | 1red 8089 |
. . 3
| |
| 3 | 1, 2 | readdcld 8104 |
. 2
|
| 4 | elznn0nn 9388 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 1 | biantrurd 305 |
. . . . 5
|
| 7 | 6 | orbi2d 792 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | peano2nn0 9337 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 1 | adantr 276 |
. . . . . . . . 9
|
| 12 | 1red 8089 |
. . . . . . . . 9
| |
| 13 | 11, 12 | readdcld 8104 |
. . . . . . . 8
|
| 14 | 13 | renegcld 8454 |
. . . . . . 7
|
| 15 | 14 | recnd 8103 |
. . . . . 6
|
| 16 | 11 | recnd 8103 |
. . . . . . . . . . . 12
|
| 17 | 1cnd 8090 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | negdid 8398 |
. . . . . . . . . . 11
|
| 19 | 18 | oveq1d 5961 |
. . . . . . . . . 10
|
| 20 | 16 | negcld 8372 |
. . . . . . . . . . 11
|
| 21 | neg1cn 9143 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 20, 22, 17 | addassd 8097 |
. . . . . . . . . 10
|
| 24 | 19, 23 | eqtrd 2238 |
. . . . . . . . 9
|
| 25 | ax-1cn 8020 |
. . . . . . . . . . 11
| |
| 26 | 1pneg1e0 9149 |
. . . . . . . . . . 11
| |
| 27 | 25, 21, 26 | addcomli 8219 |
. . . . . . . . . 10
|
| 28 | 27 | oveq2i 5957 |
. . . . . . . . 9
|
| 29 | 24, 28 | eqtrdi 2254 |
. . . . . . . 8
|
| 30 | 20 | addridd 8223 |
. . . . . . . 8
|
| 31 | 29, 30 | eqtrd 2238 |
. . . . . . 7
|
| 32 | simpr 110 |
. . . . . . 7
| |
| 33 | 31, 32 | eqeltrd 2282 |
. . . . . 6
|
| 34 | elnn0nn 9339 |
. . . . . 6
| |
| 35 | 15, 33, 34 | sylanbrc 417 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 10, 36 | orim12d 788 |
. . 3
|
| 38 | 8, 37 | mpd 13 |
. 2
|
| 39 | elznn0 9389 |
. 2
| |
| 40 | 3, 38, 39 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: zaddcllempos 9411 peano2zm 9412 zleltp1 9430 btwnnz 9469 peano2uz2 9482 uzind 9486 uzind2 9487 peano2zd 9500 eluzp1m1 9674 eluzp1p1 9676 peano2uz 9706 zltaddlt1le 10131 fzp1disj 10204 elfzp1b 10221 fzneuz 10225 fzp1nel 10228 fzval3 10335 fzossfzop1 10343 rebtwn2zlemstep 10397 flhalf 10447 frec2uzsucd 10548 zesq 10805 hashfzp1 10971 odd2np1lem 12216 odd2np1 12217 mulsucdiv2z 12229 oddp1d2 12234 zob 12235 ltoddhalfle 12237 fldivp1 12704 lgsdir2lem2 15539 |
| Copyright terms: Public domain | W3C validator |