ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2z Unicode version

Theorem peano2z 9356
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
peano2z  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )

Proof of Theorem peano2z
StepHypRef Expression
1 zre 9324 . . 3  |-  ( N  e.  ZZ  ->  N  e.  RR )
2 1red 8036 . . 3  |-  ( N  e.  ZZ  ->  1  e.  RR )
31, 2readdcld 8051 . 2  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  RR )
4 elznn0nn 9334 . . . . 5  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
54biimpi 120 . . . 4  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
61biantrurd 305 . . . . 5  |-  ( N  e.  ZZ  ->  ( -u N  e.  NN  <->  ( N  e.  RR  /\  -u N  e.  NN ) ) )
76orbi2d 791 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  e.  NN0  \/  -u N  e.  NN ) 
<->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) ) )
85, 7mpbird 167 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN ) )
9 peano2nn0 9283 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
109a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN0 ) )
111adantr 276 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  N  e.  RR )
12 1red 8036 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  1  e.  RR )
1311, 12readdcld 8051 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( N  + 
1 )  e.  RR )
1413renegcld 8401 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  RR )
1514recnd 8050 . . . . . 6  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  CC )
1611recnd 8050 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  N  e.  CC )
17 1cnd 8037 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  1  e.  CC )
1816, 17negdid 8345 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  =  (
-u N  +  -u
1 ) )
1918oveq1d 5934 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( ( -u N  +  -u 1 )  +  1 ) )
2016negcld 8319 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u N  e.  CC )
21 neg1cn 9089 . . . . . . . . . . . 12  |-  -u 1  e.  CC
2221a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u 1  e.  CC )
2320, 22, 17addassd 8044 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( ( -u N  +  -u 1 )  +  1 )  =  ( -u N  +  ( -u 1  +  1 ) ) )
2419, 23eqtrd 2226 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( -u N  +  ( -u 1  +  1 ) ) )
25 ax-1cn 7967 . . . . . . . . . . 11  |-  1  e.  CC
26 1pneg1e0 9095 . . . . . . . . . . 11  |-  ( 1  +  -u 1 )  =  0
2725, 21, 26addcomli 8166 . . . . . . . . . 10  |-  ( -u
1  +  1 )  =  0
2827oveq2i 5930 . . . . . . . . 9  |-  ( -u N  +  ( -u 1  +  1 ) )  =  ( -u N  +  0 )
2924, 28eqtrdi 2242 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  =  ( -u N  + 
0 ) )
3020addridd 8170 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u N  +  0 )  = 
-u N )
3129, 30eqtrd 2226 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  = 
-u N )
32 simpr 110 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u N  e.  NN )
3331, 32eqeltrd 2270 . . . . . 6  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  ( -u ( N  +  1 )  +  1 )  e.  NN )
34 elnn0nn 9285 . . . . . 6  |-  ( -u ( N  +  1
)  e.  NN0  <->  ( -u ( N  +  1 )  e.  CC  /\  ( -u ( N  +  1 )  +  1 )  e.  NN ) )
3515, 33, 34sylanbrc 417 . . . . 5  |-  ( ( N  e.  ZZ  /\  -u N  e.  NN )  ->  -u ( N  + 
1 )  e.  NN0 )
3635ex 115 . . . 4  |-  ( N  e.  ZZ  ->  ( -u N  e.  NN  ->  -u ( N  +  1
)  e.  NN0 )
)
3710, 36orim12d 787 . . 3  |-  ( N  e.  ZZ  ->  (
( N  e.  NN0  \/  -u N  e.  NN )  ->  ( ( N  +  1 )  e. 
NN0  \/  -u ( N  +  1 )  e. 
NN0 ) ) )
388, 37mpd 13 . 2  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  e.  NN0  \/  -u ( N  +  1 )  e.  NN0 )
)
39 elznn0 9335 . 2  |-  ( ( N  +  1 )  e.  ZZ  <->  ( ( N  +  1 )  e.  RR  /\  (
( N  +  1 )  e.  NN0  \/  -u ( N  +  1 )  e.  NN0 )
) )
403, 38, 39sylanbrc 417 1  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    e. wcel 2164  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877   -ucneg 8193   NNcn 8984   NN0cn0 9243   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321
This theorem is referenced by:  zaddcllempos  9357  peano2zm  9358  zleltp1  9375  btwnnz  9414  peano2uz2  9427  uzind  9431  uzind2  9432  peano2zd  9445  eluzp1m1  9619  eluzp1p1  9621  peano2uz  9651  zltaddlt1le  10076  fzp1disj  10149  elfzp1b  10166  fzneuz  10170  fzp1nel  10173  fzval3  10274  fzossfzop1  10282  rebtwn2zlemstep  10324  flhalf  10374  frec2uzsucd  10475  zesq  10732  hashfzp1  10898  odd2np1lem  12016  odd2np1  12017  mulsucdiv2z  12029  oddp1d2  12034  zob  12035  ltoddhalfle  12037  fldivp1  12489  lgsdir2lem2  15186
  Copyright terms: Public domain W3C validator