| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version | ||
| Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| peano2z | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zre 9330 | 
. . 3
 | |
| 2 | 1red 8041 | 
. . 3
 | |
| 3 | 1, 2 | readdcld 8056 | 
. 2
 | 
| 4 | elznn0nn 9340 | 
. . . . 5
 | |
| 5 | 4 | biimpi 120 | 
. . . 4
 | 
| 6 | 1 | biantrurd 305 | 
. . . . 5
 | 
| 7 | 6 | orbi2d 791 | 
. . . 4
 | 
| 8 | 5, 7 | mpbird 167 | 
. . 3
 | 
| 9 | peano2nn0 9289 | 
. . . . 5
 | |
| 10 | 9 | a1i 9 | 
. . . 4
 | 
| 11 | 1 | adantr 276 | 
. . . . . . . . 9
 | 
| 12 | 1red 8041 | 
. . . . . . . . 9
 | |
| 13 | 11, 12 | readdcld 8056 | 
. . . . . . . 8
 | 
| 14 | 13 | renegcld 8406 | 
. . . . . . 7
 | 
| 15 | 14 | recnd 8055 | 
. . . . . 6
 | 
| 16 | 11 | recnd 8055 | 
. . . . . . . . . . . 12
 | 
| 17 | 1cnd 8042 | 
. . . . . . . . . . . 12
 | |
| 18 | 16, 17 | negdid 8350 | 
. . . . . . . . . . 11
 | 
| 19 | 18 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 20 | 16 | negcld 8324 | 
. . . . . . . . . . 11
 | 
| 21 | neg1cn 9095 | 
. . . . . . . . . . . 12
 | |
| 22 | 21 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 23 | 20, 22, 17 | addassd 8049 | 
. . . . . . . . . 10
 | 
| 24 | 19, 23 | eqtrd 2229 | 
. . . . . . . . 9
 | 
| 25 | ax-1cn 7972 | 
. . . . . . . . . . 11
 | |
| 26 | 1pneg1e0 9101 | 
. . . . . . . . . . 11
 | |
| 27 | 25, 21, 26 | addcomli 8171 | 
. . . . . . . . . 10
 | 
| 28 | 27 | oveq2i 5933 | 
. . . . . . . . 9
 | 
| 29 | 24, 28 | eqtrdi 2245 | 
. . . . . . . 8
 | 
| 30 | 20 | addridd 8175 | 
. . . . . . . 8
 | 
| 31 | 29, 30 | eqtrd 2229 | 
. . . . . . 7
 | 
| 32 | simpr 110 | 
. . . . . . 7
 | |
| 33 | 31, 32 | eqeltrd 2273 | 
. . . . . 6
 | 
| 34 | elnn0nn 9291 | 
. . . . . 6
 | |
| 35 | 15, 33, 34 | sylanbrc 417 | 
. . . . 5
 | 
| 36 | 35 | ex 115 | 
. . . 4
 | 
| 37 | 10, 36 | orim12d 787 | 
. . 3
 | 
| 38 | 8, 37 | mpd 13 | 
. 2
 | 
| 39 | elznn0 9341 | 
. 2
 | |
| 40 | 3, 38, 39 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 | 
| This theorem is referenced by: zaddcllempos 9363 peano2zm 9364 zleltp1 9381 btwnnz 9420 peano2uz2 9433 uzind 9437 uzind2 9438 peano2zd 9451 eluzp1m1 9625 eluzp1p1 9627 peano2uz 9657 zltaddlt1le 10082 fzp1disj 10155 elfzp1b 10172 fzneuz 10176 fzp1nel 10179 fzval3 10280 fzossfzop1 10288 rebtwn2zlemstep 10342 flhalf 10392 frec2uzsucd 10493 zesq 10750 hashfzp1 10916 odd2np1lem 12037 odd2np1 12038 mulsucdiv2z 12050 oddp1d2 12055 zob 12056 ltoddhalfle 12058 fldivp1 12517 lgsdir2lem2 15270 | 
| Copyright terms: Public domain | W3C validator |