| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version | ||
| Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| Ref | Expression |
|---|---|
| peano2z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9450 |
. . 3
| |
| 2 | 1red 8161 |
. . 3
| |
| 3 | 1, 2 | readdcld 8176 |
. 2
|
| 4 | elznn0nn 9460 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 1 | biantrurd 305 |
. . . . 5
|
| 7 | 6 | orbi2d 795 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | peano2nn0 9409 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 1 | adantr 276 |
. . . . . . . . 9
|
| 12 | 1red 8161 |
. . . . . . . . 9
| |
| 13 | 11, 12 | readdcld 8176 |
. . . . . . . 8
|
| 14 | 13 | renegcld 8526 |
. . . . . . 7
|
| 15 | 14 | recnd 8175 |
. . . . . 6
|
| 16 | 11 | recnd 8175 |
. . . . . . . . . . . 12
|
| 17 | 1cnd 8162 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | negdid 8470 |
. . . . . . . . . . 11
|
| 19 | 18 | oveq1d 6016 |
. . . . . . . . . 10
|
| 20 | 16 | negcld 8444 |
. . . . . . . . . . 11
|
| 21 | neg1cn 9215 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 20, 22, 17 | addassd 8169 |
. . . . . . . . . 10
|
| 24 | 19, 23 | eqtrd 2262 |
. . . . . . . . 9
|
| 25 | ax-1cn 8092 |
. . . . . . . . . . 11
| |
| 26 | 1pneg1e0 9221 |
. . . . . . . . . . 11
| |
| 27 | 25, 21, 26 | addcomli 8291 |
. . . . . . . . . 10
|
| 28 | 27 | oveq2i 6012 |
. . . . . . . . 9
|
| 29 | 24, 28 | eqtrdi 2278 |
. . . . . . . 8
|
| 30 | 20 | addridd 8295 |
. . . . . . . 8
|
| 31 | 29, 30 | eqtrd 2262 |
. . . . . . 7
|
| 32 | simpr 110 |
. . . . . . 7
| |
| 33 | 31, 32 | eqeltrd 2306 |
. . . . . 6
|
| 34 | elnn0nn 9411 |
. . . . . 6
| |
| 35 | 15, 33, 34 | sylanbrc 417 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 10, 36 | orim12d 791 |
. . 3
|
| 38 | 8, 37 | mpd 13 |
. 2
|
| 39 | elznn0 9461 |
. 2
| |
| 40 | 3, 38, 39 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: zaddcllempos 9483 peano2zm 9484 zleltp1 9502 btwnnz 9541 peano2uz2 9554 uzind 9558 uzind2 9559 peano2zd 9572 eluzp1m1 9746 eluzp1p1 9748 peano2uz 9778 zltaddlt1le 10203 fzp1disj 10276 elfzp1b 10293 fzneuz 10297 fzp1nel 10300 fzval3 10410 fzossfzop1 10418 rebtwn2zlemstep 10472 flhalf 10522 frec2uzsucd 10623 zesq 10880 hashfzp1 11046 odd2np1lem 12383 odd2np1 12384 mulsucdiv2z 12396 oddp1d2 12401 zob 12402 ltoddhalfle 12404 fldivp1 12871 lgsdir2lem2 15708 |
| Copyright terms: Public domain | W3C validator |