Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version |
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
Ref | Expression |
---|---|
peano2z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9216 | . . 3 | |
2 | 1red 7935 | . . 3 | |
3 | 1, 2 | readdcld 7949 | . 2 |
4 | elznn0nn 9226 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 1 | biantrurd 303 | . . . . 5 |
7 | 6 | orbi2d 785 | . . . 4 |
8 | 5, 7 | mpbird 166 | . . 3 |
9 | peano2nn0 9175 | . . . . 5 | |
10 | 9 | a1i 9 | . . . 4 |
11 | 1 | adantr 274 | . . . . . . . . 9 |
12 | 1red 7935 | . . . . . . . . 9 | |
13 | 11, 12 | readdcld 7949 | . . . . . . . 8 |
14 | 13 | renegcld 8299 | . . . . . . 7 |
15 | 14 | recnd 7948 | . . . . . 6 |
16 | 11 | recnd 7948 | . . . . . . . . . . . 12 |
17 | 1cnd 7936 | . . . . . . . . . . . 12 | |
18 | 16, 17 | negdid 8243 | . . . . . . . . . . 11 |
19 | 18 | oveq1d 5868 | . . . . . . . . . 10 |
20 | 16 | negcld 8217 | . . . . . . . . . . 11 |
21 | neg1cn 8983 | . . . . . . . . . . . 12 | |
22 | 21 | a1i 9 | . . . . . . . . . . 11 |
23 | 20, 22, 17 | addassd 7942 | . . . . . . . . . 10 |
24 | 19, 23 | eqtrd 2203 | . . . . . . . . 9 |
25 | ax-1cn 7867 | . . . . . . . . . . 11 | |
26 | 1pneg1e0 8989 | . . . . . . . . . . 11 | |
27 | 25, 21, 26 | addcomli 8064 | . . . . . . . . . 10 |
28 | 27 | oveq2i 5864 | . . . . . . . . 9 |
29 | 24, 28 | eqtrdi 2219 | . . . . . . . 8 |
30 | 20 | addid1d 8068 | . . . . . . . 8 |
31 | 29, 30 | eqtrd 2203 | . . . . . . 7 |
32 | simpr 109 | . . . . . . 7 | |
33 | 31, 32 | eqeltrd 2247 | . . . . . 6 |
34 | elnn0nn 9177 | . . . . . 6 | |
35 | 15, 33, 34 | sylanbrc 415 | . . . . 5 |
36 | 35 | ex 114 | . . . 4 |
37 | 10, 36 | orim12d 781 | . . 3 |
38 | 8, 37 | mpd 13 | . 2 |
39 | elznn0 9227 | . 2 | |
40 | 3, 38, 39 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wcel 2141 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 caddc 7777 cneg 8091 cn 8878 cn0 9135 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: zaddcllempos 9249 peano2zm 9250 zleltp1 9267 btwnnz 9306 peano2uz2 9319 uzind 9323 uzind2 9324 peano2zd 9337 eluzp1m1 9510 eluzp1p1 9512 peano2uz 9542 zltaddlt1le 9964 fzp1disj 10036 elfzp1b 10053 fzneuz 10057 fzp1nel 10060 fzval3 10160 fzossfzop1 10168 rebtwn2zlemstep 10209 flhalf 10258 frec2uzsucd 10357 zesq 10594 hashfzp1 10759 odd2np1lem 11831 odd2np1 11832 mulsucdiv2z 11844 oddp1d2 11849 zob 11850 ltoddhalfle 11852 fldivp1 12300 lgsdir2lem2 13724 |
Copyright terms: Public domain | W3C validator |