Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version |
Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
Ref | Expression |
---|---|
peano2z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9195 | . . 3 | |
2 | 1red 7914 | . . 3 | |
3 | 1, 2 | readdcld 7928 | . 2 |
4 | elznn0nn 9205 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 1 | biantrurd 303 | . . . . 5 |
7 | 6 | orbi2d 780 | . . . 4 |
8 | 5, 7 | mpbird 166 | . . 3 |
9 | peano2nn0 9154 | . . . . 5 | |
10 | 9 | a1i 9 | . . . 4 |
11 | 1 | adantr 274 | . . . . . . . . 9 |
12 | 1red 7914 | . . . . . . . . 9 | |
13 | 11, 12 | readdcld 7928 | . . . . . . . 8 |
14 | 13 | renegcld 8278 | . . . . . . 7 |
15 | 14 | recnd 7927 | . . . . . 6 |
16 | 11 | recnd 7927 | . . . . . . . . . . . 12 |
17 | 1cnd 7915 | . . . . . . . . . . . 12 | |
18 | 16, 17 | negdid 8222 | . . . . . . . . . . 11 |
19 | 18 | oveq1d 5857 | . . . . . . . . . 10 |
20 | 16 | negcld 8196 | . . . . . . . . . . 11 |
21 | neg1cn 8962 | . . . . . . . . . . . 12 | |
22 | 21 | a1i 9 | . . . . . . . . . . 11 |
23 | 20, 22, 17 | addassd 7921 | . . . . . . . . . 10 |
24 | 19, 23 | eqtrd 2198 | . . . . . . . . 9 |
25 | ax-1cn 7846 | . . . . . . . . . . 11 | |
26 | 1pneg1e0 8968 | . . . . . . . . . . 11 | |
27 | 25, 21, 26 | addcomli 8043 | . . . . . . . . . 10 |
28 | 27 | oveq2i 5853 | . . . . . . . . 9 |
29 | 24, 28 | eqtrdi 2215 | . . . . . . . 8 |
30 | 20 | addid1d 8047 | . . . . . . . 8 |
31 | 29, 30 | eqtrd 2198 | . . . . . . 7 |
32 | simpr 109 | . . . . . . 7 | |
33 | 31, 32 | eqeltrd 2243 | . . . . . 6 |
34 | elnn0nn 9156 | . . . . . 6 | |
35 | 15, 33, 34 | sylanbrc 414 | . . . . 5 |
36 | 35 | ex 114 | . . . 4 |
37 | 10, 36 | orim12d 776 | . . 3 |
38 | 8, 37 | mpd 13 | . 2 |
39 | elznn0 9206 | . 2 | |
40 | 3, 38, 39 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wcel 2136 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 caddc 7756 cneg 8070 cn 8857 cn0 9114 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: zaddcllempos 9228 peano2zm 9229 zleltp1 9246 btwnnz 9285 peano2uz2 9298 uzind 9302 uzind2 9303 peano2zd 9316 eluzp1m1 9489 eluzp1p1 9491 peano2uz 9521 zltaddlt1le 9943 fzp1disj 10015 elfzp1b 10032 fzneuz 10036 fzp1nel 10039 fzval3 10139 fzossfzop1 10147 rebtwn2zlemstep 10188 flhalf 10237 frec2uzsucd 10336 zesq 10573 hashfzp1 10737 odd2np1lem 11809 odd2np1 11810 mulsucdiv2z 11822 oddp1d2 11827 zob 11828 ltoddhalfle 11830 fldivp1 12278 lgsdir2lem2 13580 |
Copyright terms: Public domain | W3C validator |