| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2z | Unicode version | ||
| Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| Ref | Expression |
|---|---|
| peano2z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9347 |
. . 3
| |
| 2 | 1red 8058 |
. . 3
| |
| 3 | 1, 2 | readdcld 8073 |
. 2
|
| 4 | elznn0nn 9357 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 1 | biantrurd 305 |
. . . . 5
|
| 7 | 6 | orbi2d 791 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | peano2nn0 9306 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 1 | adantr 276 |
. . . . . . . . 9
|
| 12 | 1red 8058 |
. . . . . . . . 9
| |
| 13 | 11, 12 | readdcld 8073 |
. . . . . . . 8
|
| 14 | 13 | renegcld 8423 |
. . . . . . 7
|
| 15 | 14 | recnd 8072 |
. . . . . 6
|
| 16 | 11 | recnd 8072 |
. . . . . . . . . . . 12
|
| 17 | 1cnd 8059 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | negdid 8367 |
. . . . . . . . . . 11
|
| 19 | 18 | oveq1d 5940 |
. . . . . . . . . 10
|
| 20 | 16 | negcld 8341 |
. . . . . . . . . . 11
|
| 21 | neg1cn 9112 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 20, 22, 17 | addassd 8066 |
. . . . . . . . . 10
|
| 24 | 19, 23 | eqtrd 2229 |
. . . . . . . . 9
|
| 25 | ax-1cn 7989 |
. . . . . . . . . . 11
| |
| 26 | 1pneg1e0 9118 |
. . . . . . . . . . 11
| |
| 27 | 25, 21, 26 | addcomli 8188 |
. . . . . . . . . 10
|
| 28 | 27 | oveq2i 5936 |
. . . . . . . . 9
|
| 29 | 24, 28 | eqtrdi 2245 |
. . . . . . . 8
|
| 30 | 20 | addridd 8192 |
. . . . . . . 8
|
| 31 | 29, 30 | eqtrd 2229 |
. . . . . . 7
|
| 32 | simpr 110 |
. . . . . . 7
| |
| 33 | 31, 32 | eqeltrd 2273 |
. . . . . 6
|
| 34 | elnn0nn 9308 |
. . . . . 6
| |
| 35 | 15, 33, 34 | sylanbrc 417 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 10, 36 | orim12d 787 |
. . 3
|
| 38 | 8, 37 | mpd 13 |
. 2
|
| 39 | elznn0 9358 |
. 2
| |
| 40 | 3, 38, 39 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: zaddcllempos 9380 peano2zm 9381 zleltp1 9398 btwnnz 9437 peano2uz2 9450 uzind 9454 uzind2 9455 peano2zd 9468 eluzp1m1 9642 eluzp1p1 9644 peano2uz 9674 zltaddlt1le 10099 fzp1disj 10172 elfzp1b 10189 fzneuz 10193 fzp1nel 10196 fzval3 10297 fzossfzop1 10305 rebtwn2zlemstep 10359 flhalf 10409 frec2uzsucd 10510 zesq 10767 hashfzp1 10933 odd2np1lem 12054 odd2np1 12055 mulsucdiv2z 12067 oddp1d2 12072 zob 12073 ltoddhalfle 12075 fldivp1 12542 lgsdir2lem2 15354 |
| Copyright terms: Public domain | W3C validator |