| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exp11 | Unicode version | ||
| Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2exp11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8p3e11 9646 |
. . . . 5
| |
| 2 | 1 | eqcomi 2233 |
. . . 4
|
| 3 | 2 | oveq2i 6005 |
. . 3
|
| 4 | 2cn 9169 |
. . . 4
| |
| 5 | 8nn0 9380 |
. . . 4
| |
| 6 | 3nn0 9375 |
. . . 4
| |
| 7 | expadd 10790 |
. . . 4
| |
| 8 | 4, 5, 6, 7 | mp3an 1371 |
. . 3
|
| 9 | 3, 8 | eqtri 2250 |
. 2
|
| 10 | 2exp8 12944 |
. . . 4
| |
| 11 | cu2 10847 |
. . . 4
| |
| 12 | 10, 11 | oveq12i 6006 |
. . 3
|
| 13 | 2nn0 9374 |
. . . . 5
| |
| 14 | 5nn0 9377 |
. . . . 5
| |
| 15 | 13, 14 | deccl 9580 |
. . . 4
|
| 16 | 6nn0 9378 |
. . . 4
| |
| 17 | eqid 2229 |
. . . 4
| |
| 18 | 4nn0 9376 |
. . . 4
| |
| 19 | 0nn0 9372 |
. . . . . 6
| |
| 20 | 13, 19 | deccl 9580 |
. . . . 5
|
| 21 | eqid 2229 |
. . . . . 6
| |
| 22 | 1nn0 9373 |
. . . . . . 7
| |
| 23 | 8cn 9184 |
. . . . . . . 8
| |
| 24 | 8t2e16 9680 |
. . . . . . . 8
| |
| 25 | 23, 4, 24 | mulcomli 8141 |
. . . . . . 7
|
| 26 | 1p1e2 9215 |
. . . . . . 7
| |
| 27 | 6p4e10 9637 |
. . . . . . 7
| |
| 28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 9626 |
. . . . . 6
|
| 29 | 5cn 9178 |
. . . . . . 7
| |
| 30 | 8t5e40 9683 |
. . . . . . 7
| |
| 31 | 23, 29, 30 | mulcomli 8141 |
. . . . . 6
|
| 32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 9630 |
. . . . 5
|
| 33 | 4cn 9176 |
. . . . . 6
| |
| 34 | 33 | addlidi 8277 |
. . . . 5
|
| 35 | 20, 19, 18, 32, 34 | decaddi 9625 |
. . . 4
|
| 36 | 6cn 9180 |
. . . . 5
| |
| 37 | 8t6e48 9684 |
. . . . 5
| |
| 38 | 23, 36, 37 | mulcomli 8141 |
. . . 4
|
| 39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 9630 |
. . 3
|
| 40 | 12, 39 | eqtri 2250 |
. 2
|
| 41 | 9, 40 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-seqfrec 10657 df-exp 10748 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |