ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exp16 Unicode version

Theorem 2exp16 12946
Description: Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
2exp16  |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6

Proof of Theorem 2exp16
StepHypRef Expression
1 2nn0 9374 . 2  |-  2  e.  NN0
2 8nn0 9380 . 2  |-  8  e.  NN0
3 8cn 9184 . . 3  |-  8  e.  CC
4 2cn 9169 . . 3  |-  2  e.  CC
5 8t2e16 9680 . . 3  |-  ( 8  x.  2 )  = ; 1
6
63, 4, 5mulcomli 8141 . 2  |-  ( 2  x.  8 )  = ; 1
6
7 2exp8 12944 . 2  |-  ( 2 ^ 8 )  = ;; 2 5 6
8 5nn0 9377 . . . . 5  |-  5  e.  NN0
91, 8deccl 9580 . . . 4  |- ; 2 5  e.  NN0
10 6nn0 9378 . . . 4  |-  6  e.  NN0
119, 10deccl 9580 . . 3  |- ;; 2 5 6  e.  NN0
12 eqid 2229 . . 3  |- ;; 2 5 6  = ;; 2 5 6
13 1nn0 9373 . . . . 5  |-  1  e.  NN0
1413, 8deccl 9580 . . . 4  |- ; 1 5  e.  NN0
15 3nn0 9375 . . . 4  |-  3  e.  NN0
1614, 15deccl 9580 . . 3  |- ;; 1 5 3  e.  NN0
17 eqid 2229 . . . 4  |- ; 2 5  = ; 2 5
18 eqid 2229 . . . 4  |- ;; 1 5 3  = ;; 1 5 3
1913, 1deccl 9580 . . . . 5  |- ; 1 2  e.  NN0
2019, 2deccl 9580 . . . 4  |- ;; 1 2 8  e.  NN0
21 4nn0 9376 . . . . . 6  |-  4  e.  NN0
2213, 21deccl 9580 . . . . 5  |- ; 1 4  e.  NN0
23 eqid 2229 . . . . . 6  |- ; 1 5  = ; 1 5
24 eqid 2229 . . . . . 6  |- ;; 1 2 8  = ;; 1 2 8
25 0nn0 9372 . . . . . . . 8  |-  0  e.  NN0
2613dec0h 9587 . . . . . . . 8  |-  1  = ; 0 1
27 eqid 2229 . . . . . . . 8  |- ; 1 2  = ; 1 2
28 0p1e1 9212 . . . . . . . 8  |-  ( 0  +  1 )  =  1
29 1p2e3 9233 . . . . . . . 8  |-  ( 1  +  2 )  =  3
3025, 13, 13, 1, 26, 27, 28, 29decadd 9619 . . . . . . 7  |-  ( 1  + ; 1 2 )  = ; 1
3
31 3p1e4 9234 . . . . . . 7  |-  ( 3  +  1 )  =  4
3213, 15, 13, 30, 31decaddi 9625 . . . . . 6  |-  ( ( 1  + ; 1 2 )  +  1 )  = ; 1 4
33 5cn 9178 . . . . . . 7  |-  5  e.  CC
34 8p5e13 9648 . . . . . . 7  |-  ( 8  +  5 )  = ; 1
3
353, 33, 34addcomli 8279 . . . . . 6  |-  ( 5  +  8 )  = ; 1
3
3613, 8, 19, 2, 23, 24, 32, 15, 35decaddc 9620 . . . . 5  |-  (; 1 5  + ;; 1 2 8 )  = ;; 1 4 3
37 eqid 2229 . . . . . . 7  |- ; 1 4  = ; 1 4
38 4p1e5 9235 . . . . . . 7  |-  ( 4  +  1 )  =  5
3913, 21, 13, 37, 38decaddi 9625 . . . . . 6  |-  (; 1 4  +  1 )  = ; 1 5
40 2t2e4 9253 . . . . . . . 8  |-  ( 2  x.  2 )  =  4
41 1p1e2 9215 . . . . . . . 8  |-  ( 1  +  1 )  =  2
4240, 41oveq12i 6006 . . . . . . 7  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
43 4p2e6 9242 . . . . . . 7  |-  ( 4  +  2 )  =  6
4442, 43eqtri 2250 . . . . . 6  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  6
45 5t2e10 9665 . . . . . . 7  |-  ( 5  x.  2 )  = ; 1
0
4633addlidi 8277 . . . . . . 7  |-  ( 0  +  5 )  =  5
4713, 25, 8, 45, 46decaddi 9625 . . . . . 6  |-  ( ( 5  x.  2 )  +  5 )  = ; 1
5
481, 8, 13, 8, 17, 39, 1, 8, 13, 44, 47decmac 9617 . . . . 5  |-  ( (; 2
5  x.  2 )  +  (; 1 4  +  1 ) )  = ; 6 5
49 6t2e12 9669 . . . . . 6  |-  ( 6  x.  2 )  = ; 1
2
50 3cn 9173 . . . . . . 7  |-  3  e.  CC
51 3p2e5 9240 . . . . . . 7  |-  ( 3  +  2 )  =  5
5250, 4, 51addcomli 8279 . . . . . 6  |-  ( 2  +  3 )  =  5
5313, 1, 15, 49, 52decaddi 9625 . . . . 5  |-  ( ( 6  x.  2 )  +  3 )  = ; 1
5
549, 10, 22, 15, 12, 36, 1, 8, 13, 48, 53decmac 9617 . . . 4  |-  ( (;; 2 5 6  x.  2 )  +  (; 1
5  + ;; 1 2 8 ) )  = ;; 6 5 5
5515dec0h 9587 . . . . 5  |-  3  = ; 0 3
5650addlidi 8277 . . . . . . 7  |-  ( 0  +  3 )  =  3
5756, 55eqtri 2250 . . . . . 6  |-  ( 0  +  3 )  = ; 0
3
584addlidi 8277 . . . . . . . 8  |-  ( 0  +  2 )  =  2
5958oveq2i 6005 . . . . . . 7  |-  ( ( 2  x.  5 )  +  ( 0  +  2 ) )  =  ( ( 2  x.  5 )  +  2 )
6033, 4, 45mulcomli 8141 . . . . . . . 8  |-  ( 2  x.  5 )  = ; 1
0
6113, 25, 1, 60, 58decaddi 9625 . . . . . . 7  |-  ( ( 2  x.  5 )  +  2 )  = ; 1
2
6259, 61eqtri 2250 . . . . . 6  |-  ( ( 2  x.  5 )  +  ( 0  +  2 ) )  = ; 1
2
63 5t5e25 9668 . . . . . . 7  |-  ( 5  x.  5 )  = ; 2
5
64 5p3e8 9246 . . . . . . 7  |-  ( 5  +  3 )  =  8
651, 8, 15, 63, 64decaddi 9625 . . . . . 6  |-  ( ( 5  x.  5 )  +  3 )  = ; 2
8
661, 8, 25, 15, 17, 57, 8, 2, 1, 62, 65decmac 9617 . . . . 5  |-  ( (; 2
5  x.  5 )  +  ( 0  +  3 ) )  = ;; 1 2 8
67 6t5e30 9672 . . . . . 6  |-  ( 6  x.  5 )  = ; 3
0
6815, 25, 15, 67, 56decaddi 9625 . . . . 5  |-  ( ( 6  x.  5 )  +  3 )  = ; 3
3
699, 10, 25, 15, 12, 55, 8, 15, 15, 66, 68decmac 9617 . . . 4  |-  ( (;; 2 5 6  x.  5 )  +  3 )  = ;;; 1 2 8 3
701, 8, 14, 15, 17, 18, 11, 15, 20, 54, 69decma2c 9618 . . 3  |-  ( (;; 2 5 6  x. ; 2
5 )  + ;; 1 5 3 )  = ;;; 6 5 5 3
71 6cn 9180 . . . . . . 7  |-  6  e.  CC
7271, 4, 49mulcomli 8141 . . . . . 6  |-  ( 2  x.  6 )  = ; 1
2
7313, 1, 15, 72, 52decaddi 9625 . . . . 5  |-  ( ( 2  x.  6 )  +  3 )  = ; 1
5
7471, 33, 67mulcomli 8141 . . . . . 6  |-  ( 5  x.  6 )  = ; 3
0
7515, 25, 15, 74, 56decaddi 9625 . . . . 5  |-  ( ( 5  x.  6 )  +  3 )  = ; 3
3
761, 8, 15, 17, 10, 15, 15, 73, 75decrmac 9623 . . . 4  |-  ( (; 2
5  x.  6 )  +  3 )  = ;; 1 5 3
77 6t6e36 9673 . . . 4  |-  ( 6  x.  6 )  = ; 3
6
7810, 9, 10, 12, 10, 15, 76, 77decmul1c 9630 . . 3  |-  (;; 2 5 6  x.  6 )  = ;;; 1 5 3 6
7911, 9, 10, 12, 10, 16, 70, 78decmul2c 9631 . 2  |-  (;; 2 5 6  x. ;; 2 5 6 )  = ;;;; 6 5 5 3 6
801, 2, 6, 7, 79numexp2x 12934 1  |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6
Colors of variables: wff set class
Syntax hints:    = wceq 1395  (class class class)co 5994   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992   2c2 9149   3c3 9150   4c4 9151   5c5 9152   6c6 9153   8c8 9155  ;cdc 9566   ^cexp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-seqfrec 10657  df-exp 10748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator