ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exp16 Unicode version

Theorem 2exp16 12804
Description: Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
2exp16  |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6

Proof of Theorem 2exp16
StepHypRef Expression
1 2nn0 9319 . 2  |-  2  e.  NN0
2 8nn0 9325 . 2  |-  8  e.  NN0
3 8cn 9129 . . 3  |-  8  e.  CC
4 2cn 9114 . . 3  |-  2  e.  CC
5 8t2e16 9625 . . 3  |-  ( 8  x.  2 )  = ; 1
6
63, 4, 5mulcomli 8086 . 2  |-  ( 2  x.  8 )  = ; 1
6
7 2exp8 12802 . 2  |-  ( 2 ^ 8 )  = ;; 2 5 6
8 5nn0 9322 . . . . 5  |-  5  e.  NN0
91, 8deccl 9525 . . . 4  |- ; 2 5  e.  NN0
10 6nn0 9323 . . . 4  |-  6  e.  NN0
119, 10deccl 9525 . . 3  |- ;; 2 5 6  e.  NN0
12 eqid 2206 . . 3  |- ;; 2 5 6  = ;; 2 5 6
13 1nn0 9318 . . . . 5  |-  1  e.  NN0
1413, 8deccl 9525 . . . 4  |- ; 1 5  e.  NN0
15 3nn0 9320 . . . 4  |-  3  e.  NN0
1614, 15deccl 9525 . . 3  |- ;; 1 5 3  e.  NN0
17 eqid 2206 . . . 4  |- ; 2 5  = ; 2 5
18 eqid 2206 . . . 4  |- ;; 1 5 3  = ;; 1 5 3
1913, 1deccl 9525 . . . . 5  |- ; 1 2  e.  NN0
2019, 2deccl 9525 . . . 4  |- ;; 1 2 8  e.  NN0
21 4nn0 9321 . . . . . 6  |-  4  e.  NN0
2213, 21deccl 9525 . . . . 5  |- ; 1 4  e.  NN0
23 eqid 2206 . . . . . 6  |- ; 1 5  = ; 1 5
24 eqid 2206 . . . . . 6  |- ;; 1 2 8  = ;; 1 2 8
25 0nn0 9317 . . . . . . . 8  |-  0  e.  NN0
2613dec0h 9532 . . . . . . . 8  |-  1  = ; 0 1
27 eqid 2206 . . . . . . . 8  |- ; 1 2  = ; 1 2
28 0p1e1 9157 . . . . . . . 8  |-  ( 0  +  1 )  =  1
29 1p2e3 9178 . . . . . . . 8  |-  ( 1  +  2 )  =  3
3025, 13, 13, 1, 26, 27, 28, 29decadd 9564 . . . . . . 7  |-  ( 1  + ; 1 2 )  = ; 1
3
31 3p1e4 9179 . . . . . . 7  |-  ( 3  +  1 )  =  4
3213, 15, 13, 30, 31decaddi 9570 . . . . . 6  |-  ( ( 1  + ; 1 2 )  +  1 )  = ; 1 4
33 5cn 9123 . . . . . . 7  |-  5  e.  CC
34 8p5e13 9593 . . . . . . 7  |-  ( 8  +  5 )  = ; 1
3
353, 33, 34addcomli 8224 . . . . . 6  |-  ( 5  +  8 )  = ; 1
3
3613, 8, 19, 2, 23, 24, 32, 15, 35decaddc 9565 . . . . 5  |-  (; 1 5  + ;; 1 2 8 )  = ;; 1 4 3
37 eqid 2206 . . . . . . 7  |- ; 1 4  = ; 1 4
38 4p1e5 9180 . . . . . . 7  |-  ( 4  +  1 )  =  5
3913, 21, 13, 37, 38decaddi 9570 . . . . . 6  |-  (; 1 4  +  1 )  = ; 1 5
40 2t2e4 9198 . . . . . . . 8  |-  ( 2  x.  2 )  =  4
41 1p1e2 9160 . . . . . . . 8  |-  ( 1  +  1 )  =  2
4240, 41oveq12i 5963 . . . . . . 7  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
43 4p2e6 9187 . . . . . . 7  |-  ( 4  +  2 )  =  6
4442, 43eqtri 2227 . . . . . 6  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  6
45 5t2e10 9610 . . . . . . 7  |-  ( 5  x.  2 )  = ; 1
0
4633addlidi 8222 . . . . . . 7  |-  ( 0  +  5 )  =  5
4713, 25, 8, 45, 46decaddi 9570 . . . . . 6  |-  ( ( 5  x.  2 )  +  5 )  = ; 1
5
481, 8, 13, 8, 17, 39, 1, 8, 13, 44, 47decmac 9562 . . . . 5  |-  ( (; 2
5  x.  2 )  +  (; 1 4  +  1 ) )  = ; 6 5
49 6t2e12 9614 . . . . . 6  |-  ( 6  x.  2 )  = ; 1
2
50 3cn 9118 . . . . . . 7  |-  3  e.  CC
51 3p2e5 9185 . . . . . . 7  |-  ( 3  +  2 )  =  5
5250, 4, 51addcomli 8224 . . . . . 6  |-  ( 2  +  3 )  =  5
5313, 1, 15, 49, 52decaddi 9570 . . . . 5  |-  ( ( 6  x.  2 )  +  3 )  = ; 1
5
549, 10, 22, 15, 12, 36, 1, 8, 13, 48, 53decmac 9562 . . . 4  |-  ( (;; 2 5 6  x.  2 )  +  (; 1
5  + ;; 1 2 8 ) )  = ;; 6 5 5
5515dec0h 9532 . . . . 5  |-  3  = ; 0 3
5650addlidi 8222 . . . . . . 7  |-  ( 0  +  3 )  =  3
5756, 55eqtri 2227 . . . . . 6  |-  ( 0  +  3 )  = ; 0
3
584addlidi 8222 . . . . . . . 8  |-  ( 0  +  2 )  =  2
5958oveq2i 5962 . . . . . . 7  |-  ( ( 2  x.  5 )  +  ( 0  +  2 ) )  =  ( ( 2  x.  5 )  +  2 )
6033, 4, 45mulcomli 8086 . . . . . . . 8  |-  ( 2  x.  5 )  = ; 1
0
6113, 25, 1, 60, 58decaddi 9570 . . . . . . 7  |-  ( ( 2  x.  5 )  +  2 )  = ; 1
2
6259, 61eqtri 2227 . . . . . 6  |-  ( ( 2  x.  5 )  +  ( 0  +  2 ) )  = ; 1
2
63 5t5e25 9613 . . . . . . 7  |-  ( 5  x.  5 )  = ; 2
5
64 5p3e8 9191 . . . . . . 7  |-  ( 5  +  3 )  =  8
651, 8, 15, 63, 64decaddi 9570 . . . . . 6  |-  ( ( 5  x.  5 )  +  3 )  = ; 2
8
661, 8, 25, 15, 17, 57, 8, 2, 1, 62, 65decmac 9562 . . . . 5  |-  ( (; 2
5  x.  5 )  +  ( 0  +  3 ) )  = ;; 1 2 8
67 6t5e30 9617 . . . . . 6  |-  ( 6  x.  5 )  = ; 3
0
6815, 25, 15, 67, 56decaddi 9570 . . . . 5  |-  ( ( 6  x.  5 )  +  3 )  = ; 3
3
699, 10, 25, 15, 12, 55, 8, 15, 15, 66, 68decmac 9562 . . . 4  |-  ( (;; 2 5 6  x.  5 )  +  3 )  = ;;; 1 2 8 3
701, 8, 14, 15, 17, 18, 11, 15, 20, 54, 69decma2c 9563 . . 3  |-  ( (;; 2 5 6  x. ; 2
5 )  + ;; 1 5 3 )  = ;;; 6 5 5 3
71 6cn 9125 . . . . . . 7  |-  6  e.  CC
7271, 4, 49mulcomli 8086 . . . . . 6  |-  ( 2  x.  6 )  = ; 1
2
7313, 1, 15, 72, 52decaddi 9570 . . . . 5  |-  ( ( 2  x.  6 )  +  3 )  = ; 1
5
7471, 33, 67mulcomli 8086 . . . . . 6  |-  ( 5  x.  6 )  = ; 3
0
7515, 25, 15, 74, 56decaddi 9570 . . . . 5  |-  ( ( 5  x.  6 )  +  3 )  = ; 3
3
761, 8, 15, 17, 10, 15, 15, 73, 75decrmac 9568 . . . 4  |-  ( (; 2
5  x.  6 )  +  3 )  = ;; 1 5 3
77 6t6e36 9618 . . . 4  |-  ( 6  x.  6 )  = ; 3
6
7810, 9, 10, 12, 10, 15, 76, 77decmul1c 9575 . . 3  |-  (;; 2 5 6  x.  6 )  = ;;; 1 5 3 6
7911, 9, 10, 12, 10, 16, 70, 78decmul2c 9576 . 2  |-  (;; 2 5 6  x. ;; 2 5 6 )  = ;;;; 6 5 5 3 6
801, 2, 6, 7, 79numexp2x 12792 1  |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5951   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937   2c2 9094   3c3 9095   4c4 9096   5c5 9097   6c6 9098   8c8 9100  ;cdc 9511   ^cexp 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-seqfrec 10600  df-exp 10691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator