ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exp16 Unicode version

Theorem 2exp16 12582
Description: Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
2exp16  |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6

Proof of Theorem 2exp16
StepHypRef Expression
1 2nn0 9263 . 2  |-  2  e.  NN0
2 8nn0 9269 . 2  |-  8  e.  NN0
3 8cn 9073 . . 3  |-  8  e.  CC
4 2cn 9058 . . 3  |-  2  e.  CC
5 8t2e16 9568 . . 3  |-  ( 8  x.  2 )  = ; 1
6
63, 4, 5mulcomli 8031 . 2  |-  ( 2  x.  8 )  = ; 1
6
7 2exp8 12580 . 2  |-  ( 2 ^ 8 )  = ;; 2 5 6
8 5nn0 9266 . . . . 5  |-  5  e.  NN0
91, 8deccl 9468 . . . 4  |- ; 2 5  e.  NN0
10 6nn0 9267 . . . 4  |-  6  e.  NN0
119, 10deccl 9468 . . 3  |- ;; 2 5 6  e.  NN0
12 eqid 2196 . . 3  |- ;; 2 5 6  = ;; 2 5 6
13 1nn0 9262 . . . . 5  |-  1  e.  NN0
1413, 8deccl 9468 . . . 4  |- ; 1 5  e.  NN0
15 3nn0 9264 . . . 4  |-  3  e.  NN0
1614, 15deccl 9468 . . 3  |- ;; 1 5 3  e.  NN0
17 eqid 2196 . . . 4  |- ; 2 5  = ; 2 5
18 eqid 2196 . . . 4  |- ;; 1 5 3  = ;; 1 5 3
1913, 1deccl 9468 . . . . 5  |- ; 1 2  e.  NN0
2019, 2deccl 9468 . . . 4  |- ;; 1 2 8  e.  NN0
21 4nn0 9265 . . . . . 6  |-  4  e.  NN0
2213, 21deccl 9468 . . . . 5  |- ; 1 4  e.  NN0
23 eqid 2196 . . . . . 6  |- ; 1 5  = ; 1 5
24 eqid 2196 . . . . . 6  |- ;; 1 2 8  = ;; 1 2 8
25 0nn0 9261 . . . . . . . 8  |-  0  e.  NN0
2613dec0h 9475 . . . . . . . 8  |-  1  = ; 0 1
27 eqid 2196 . . . . . . . 8  |- ; 1 2  = ; 1 2
28 0p1e1 9101 . . . . . . . 8  |-  ( 0  +  1 )  =  1
29 1p2e3 9122 . . . . . . . 8  |-  ( 1  +  2 )  =  3
3025, 13, 13, 1, 26, 27, 28, 29decadd 9507 . . . . . . 7  |-  ( 1  + ; 1 2 )  = ; 1
3
31 3p1e4 9123 . . . . . . 7  |-  ( 3  +  1 )  =  4
3213, 15, 13, 30, 31decaddi 9513 . . . . . 6  |-  ( ( 1  + ; 1 2 )  +  1 )  = ; 1 4
33 5cn 9067 . . . . . . 7  |-  5  e.  CC
34 8p5e13 9536 . . . . . . 7  |-  ( 8  +  5 )  = ; 1
3
353, 33, 34addcomli 8169 . . . . . 6  |-  ( 5  +  8 )  = ; 1
3
3613, 8, 19, 2, 23, 24, 32, 15, 35decaddc 9508 . . . . 5  |-  (; 1 5  + ;; 1 2 8 )  = ;; 1 4 3
37 eqid 2196 . . . . . . 7  |- ; 1 4  = ; 1 4
38 4p1e5 9124 . . . . . . 7  |-  ( 4  +  1 )  =  5
3913, 21, 13, 37, 38decaddi 9513 . . . . . 6  |-  (; 1 4  +  1 )  = ; 1 5
40 2t2e4 9142 . . . . . . . 8  |-  ( 2  x.  2 )  =  4
41 1p1e2 9104 . . . . . . . 8  |-  ( 1  +  1 )  =  2
4240, 41oveq12i 5934 . . . . . . 7  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
43 4p2e6 9131 . . . . . . 7  |-  ( 4  +  2 )  =  6
4442, 43eqtri 2217 . . . . . 6  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  6
45 5t2e10 9553 . . . . . . 7  |-  ( 5  x.  2 )  = ; 1
0
4633addlidi 8167 . . . . . . 7  |-  ( 0  +  5 )  =  5
4713, 25, 8, 45, 46decaddi 9513 . . . . . 6  |-  ( ( 5  x.  2 )  +  5 )  = ; 1
5
481, 8, 13, 8, 17, 39, 1, 8, 13, 44, 47decmac 9505 . . . . 5  |-  ( (; 2
5  x.  2 )  +  (; 1 4  +  1 ) )  = ; 6 5
49 6t2e12 9557 . . . . . 6  |-  ( 6  x.  2 )  = ; 1
2
50 3cn 9062 . . . . . . 7  |-  3  e.  CC
51 3p2e5 9129 . . . . . . 7  |-  ( 3  +  2 )  =  5
5250, 4, 51addcomli 8169 . . . . . 6  |-  ( 2  +  3 )  =  5
5313, 1, 15, 49, 52decaddi 9513 . . . . 5  |-  ( ( 6  x.  2 )  +  3 )  = ; 1
5
549, 10, 22, 15, 12, 36, 1, 8, 13, 48, 53decmac 9505 . . . 4  |-  ( (;; 2 5 6  x.  2 )  +  (; 1
5  + ;; 1 2 8 ) )  = ;; 6 5 5
5515dec0h 9475 . . . . 5  |-  3  = ; 0 3
5650addlidi 8167 . . . . . . 7  |-  ( 0  +  3 )  =  3
5756, 55eqtri 2217 . . . . . 6  |-  ( 0  +  3 )  = ; 0
3
584addlidi 8167 . . . . . . . 8  |-  ( 0  +  2 )  =  2
5958oveq2i 5933 . . . . . . 7  |-  ( ( 2  x.  5 )  +  ( 0  +  2 ) )  =  ( ( 2  x.  5 )  +  2 )
6033, 4, 45mulcomli 8031 . . . . . . . 8  |-  ( 2  x.  5 )  = ; 1
0
6113, 25, 1, 60, 58decaddi 9513 . . . . . . 7  |-  ( ( 2  x.  5 )  +  2 )  = ; 1
2
6259, 61eqtri 2217 . . . . . 6  |-  ( ( 2  x.  5 )  +  ( 0  +  2 ) )  = ; 1
2
63 5t5e25 9556 . . . . . . 7  |-  ( 5  x.  5 )  = ; 2
5
64 5p3e8 9135 . . . . . . 7  |-  ( 5  +  3 )  =  8
651, 8, 15, 63, 64decaddi 9513 . . . . . 6  |-  ( ( 5  x.  5 )  +  3 )  = ; 2
8
661, 8, 25, 15, 17, 57, 8, 2, 1, 62, 65decmac 9505 . . . . 5  |-  ( (; 2
5  x.  5 )  +  ( 0  +  3 ) )  = ;; 1 2 8
67 6t5e30 9560 . . . . . 6  |-  ( 6  x.  5 )  = ; 3
0
6815, 25, 15, 67, 56decaddi 9513 . . . . 5  |-  ( ( 6  x.  5 )  +  3 )  = ; 3
3
699, 10, 25, 15, 12, 55, 8, 15, 15, 66, 68decmac 9505 . . . 4  |-  ( (;; 2 5 6  x.  5 )  +  3 )  = ;;; 1 2 8 3
701, 8, 14, 15, 17, 18, 11, 15, 20, 54, 69decma2c 9506 . . 3  |-  ( (;; 2 5 6  x. ; 2
5 )  + ;; 1 5 3 )  = ;;; 6 5 5 3
71 6cn 9069 . . . . . . 7  |-  6  e.  CC
7271, 4, 49mulcomli 8031 . . . . . 6  |-  ( 2  x.  6 )  = ; 1
2
7313, 1, 15, 72, 52decaddi 9513 . . . . 5  |-  ( ( 2  x.  6 )  +  3 )  = ; 1
5
7471, 33, 67mulcomli 8031 . . . . . 6  |-  ( 5  x.  6 )  = ; 3
0
7515, 25, 15, 74, 56decaddi 9513 . . . . 5  |-  ( ( 5  x.  6 )  +  3 )  = ; 3
3
761, 8, 15, 17, 10, 15, 15, 73, 75decrmac 9511 . . . 4  |-  ( (; 2
5  x.  6 )  +  3 )  = ;; 1 5 3
77 6t6e36 9561 . . . 4  |-  ( 6  x.  6 )  = ; 3
6
7810, 9, 10, 12, 10, 15, 76, 77decmul1c 9518 . . 3  |-  (;; 2 5 6  x.  6 )  = ;;; 1 5 3 6
7911, 9, 10, 12, 10, 16, 70, 78decmul2c 9519 . 2  |-  (;; 2 5 6  x. ;; 2 5 6 )  = ;;;; 6 5 5 3 6
801, 2, 6, 7, 79numexp2x 12570 1  |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5922   0cc0 7877   1c1 7878    + caddc 7880    x. cmul 7882   2c2 9038   3c3 9039   4c4 9040   5c5 9041   6c6 9042   8c8 9044  ;cdc 9454   ^cexp 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-9 9053  df-n0 9247  df-z 9324  df-dec 9455  df-uz 9599  df-seqfrec 10525  df-exp 10616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator