Proof of Theorem 2exp16
| Step | Hyp | Ref
| Expression |
| 1 | | 2nn0 9283 |
. 2
 |
| 2 | | 8nn0 9289 |
. 2
 |
| 3 | | 8cn 9093 |
. . 3
 |
| 4 | | 2cn 9078 |
. . 3
 |
| 5 | | 8t2e16 9588 |
. . 3
  ;  |
| 6 | 3, 4, 5 | mulcomli 8050 |
. 2
  ;  |
| 7 | | 2exp8 12629 |
. 2
    ;;   |
| 8 | | 5nn0 9286 |
. . . . 5
 |
| 9 | 1, 8 | deccl 9488 |
. . . 4
;  |
| 10 | | 6nn0 9287 |
. . . 4
 |
| 11 | 9, 10 | deccl 9488 |
. . 3
;;   |
| 12 | | eqid 2196 |
. . 3
;;  ;;   |
| 13 | | 1nn0 9282 |
. . . . 5
 |
| 14 | 13, 8 | deccl 9488 |
. . . 4
;  |
| 15 | | 3nn0 9284 |
. . . 4
 |
| 16 | 14, 15 | deccl 9488 |
. . 3
;;   |
| 17 | | eqid 2196 |
. . . 4
; ;  |
| 18 | | eqid 2196 |
. . . 4
;;  ;;   |
| 19 | 13, 1 | deccl 9488 |
. . . . 5
;  |
| 20 | 19, 2 | deccl 9488 |
. . . 4
;;   |
| 21 | | 4nn0 9285 |
. . . . . 6
 |
| 22 | 13, 21 | deccl 9488 |
. . . . 5
;  |
| 23 | | eqid 2196 |
. . . . . 6
; ;  |
| 24 | | eqid 2196 |
. . . . . 6
;;  ;;   |
| 25 | | 0nn0 9281 |
. . . . . . . 8
 |
| 26 | 13 | dec0h 9495 |
. . . . . . . 8
;  |
| 27 | | eqid 2196 |
. . . . . . . 8
; ;  |
| 28 | | 0p1e1 9121 |
. . . . . . . 8
   |
| 29 | | 1p2e3 9142 |
. . . . . . . 8
   |
| 30 | 25, 13, 13, 1, 26, 27, 28, 29 | decadd 9527 |
. . . . . . 7
 ;  ;  |
| 31 | | 3p1e4 9143 |
. . . . . . 7
   |
| 32 | 13, 15, 13, 30, 31 | decaddi 9533 |
. . . . . 6
  ;   ;  |
| 33 | | 5cn 9087 |
. . . . . . 7
 |
| 34 | | 8p5e13 9556 |
. . . . . . 7
  ;  |
| 35 | 3, 33, 34 | addcomli 8188 |
. . . . . 6
  ;  |
| 36 | 13, 8, 19, 2, 23, 24, 32, 15, 35 | decaddc 9528 |
. . . . 5
; ;;   ;;   |
| 37 | | eqid 2196 |
. . . . . . 7
; ;  |
| 38 | | 4p1e5 9144 |
. . . . . . 7
   |
| 39 | 13, 21, 13, 37, 38 | decaddi 9533 |
. . . . . 6
;  ;  |
| 40 | | 2t2e4 9162 |
. . . . . . . 8
   |
| 41 | | 1p1e2 9124 |
. . . . . . . 8
   |
| 42 | 40, 41 | oveq12i 5937 |
. . . . . . 7
         |
| 43 | | 4p2e6 9151 |
. . . . . . 7
   |
| 44 | 42, 43 | eqtri 2217 |
. . . . . 6
       |
| 45 | | 5t2e10 9573 |
. . . . . . 7
  ;  |
| 46 | 33 | addlidi 8186 |
. . . . . . 7
   |
| 47 | 13, 25, 8, 45, 46 | decaddi 9533 |
. . . . . 6
    ;  |
| 48 | 1, 8, 13, 8, 17, 39, 1, 8, 13, 44, 47 | decmac 9525 |
. . . . 5
 ;  ;   ;  |
| 49 | | 6t2e12 9577 |
. . . . . 6
  ;  |
| 50 | | 3cn 9082 |
. . . . . . 7
 |
| 51 | | 3p2e5 9149 |
. . . . . . 7
   |
| 52 | 50, 4, 51 | addcomli 8188 |
. . . . . 6
   |
| 53 | 13, 1, 15, 49, 52 | decaddi 9533 |
. . . . 5
    ;  |
| 54 | 9, 10, 22, 15, 12, 36, 1, 8, 13, 48, 53 | decmac 9525 |
. . . 4
 ;;   ; ;;    ;;   |
| 55 | 15 | dec0h 9495 |
. . . . 5
;  |
| 56 | 50 | addlidi 8186 |
. . . . . . 7
   |
| 57 | 56, 55 | eqtri 2217 |
. . . . . 6
  ;  |
| 58 | 4 | addlidi 8186 |
. . . . . . . 8
   |
| 59 | 58 | oveq2i 5936 |
. . . . . . 7
           |
| 60 | 33, 4, 45 | mulcomli 8050 |
. . . . . . . 8
  ;  |
| 61 | 13, 25, 1, 60, 58 | decaddi 9533 |
. . . . . . 7
    ;  |
| 62 | 59, 61 | eqtri 2217 |
. . . . . 6
      ;  |
| 63 | | 5t5e25 9576 |
. . . . . . 7
  ;  |
| 64 | | 5p3e8 9155 |
. . . . . . 7
   |
| 65 | 1, 8, 15, 63, 64 | decaddi 9533 |
. . . . . 6
    ;  |
| 66 | 1, 8, 25, 15, 17, 57, 8, 2, 1,
62, 65 | decmac 9525 |
. . . . 5
 ;     ;;   |
| 67 | | 6t5e30 9580 |
. . . . . 6
  ;  |
| 68 | 15, 25, 15, 67, 56 | decaddi 9533 |
. . . . 5
    ;  |
| 69 | 9, 10, 25, 15, 12, 55, 8, 15, 15, 66, 68 | decmac 9525 |
. . . 4
 ;;    ;;;    |
| 70 | 1, 8, 14, 15, 17, 18, 11, 15, 20, 54, 69 | decma2c 9526 |
. . 3
 ;;  ;  ;;   ;;;    |
| 71 | | 6cn 9089 |
. . . . . . 7
 |
| 72 | 71, 4, 49 | mulcomli 8050 |
. . . . . 6
  ;  |
| 73 | 13, 1, 15, 72, 52 | decaddi 9533 |
. . . . 5
    ;  |
| 74 | 71, 33, 67 | mulcomli 8050 |
. . . . . 6
  ;  |
| 75 | 15, 25, 15, 74, 56 | decaddi 9533 |
. . . . 5
    ;  |
| 76 | 1, 8, 15, 17, 10, 15, 15, 73, 75 | decrmac 9531 |
. . . 4
 ;   ;;   |
| 77 | | 6t6e36 9581 |
. . . 4
  ;  |
| 78 | 10, 9, 10, 12, 10, 15, 76, 77 | decmul1c 9538 |
. . 3
;;   ;;;    |
| 79 | 11, 9, 10, 12, 10, 16, 70, 78 | decmul2c 9539 |
. 2
;;  ;;   ;;;;     |
| 80 | 1, 2, 6, 7, 79 | numexp2x 12619 |
1
  ;  ;;;;     |