ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1 Unicode version

Theorem reeff1 11155
Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1  |-  ( exp  |`  RR ) : RR -1-1-> RR+

Proof of Theorem reeff1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eff 11117 . . . . 5  |-  exp : CC
--> CC
2 ffn 5195 . . . . 5  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
31, 2ax-mp 7 . . . 4  |-  exp  Fn  CC
4 ax-resscn 7534 . . . 4  |-  RR  C_  CC
5 fnssres 5161 . . . 4  |-  ( ( exp  Fn  CC  /\  RR  C_  CC )  -> 
( exp  |`  RR )  Fn  RR )
63, 4, 5mp2an 418 . . 3  |-  ( exp  |`  RR )  Fn  RR
7 fvres 5364 . . . . 5  |-  ( x  e.  RR  ->  (
( exp  |`  RR ) `
 x )  =  ( exp `  x
) )
8 rpefcl 11139 . . . . 5  |-  ( x  e.  RR  ->  ( exp `  x )  e.  RR+ )
97, 8eqeltrd 2171 . . . 4  |-  ( x  e.  RR  ->  (
( exp  |`  RR ) `
 x )  e.  RR+ )
109rgen 2439 . . 3  |-  A. x  e.  RR  ( ( exp  |`  RR ) `  x
)  e.  RR+
11 ffnfv 5495 . . 3  |-  ( ( exp  |`  RR ) : RR --> RR+  <->  ( ( exp  |`  RR )  Fn  RR  /\ 
A. x  e.  RR  ( ( exp  |`  RR ) `
 x )  e.  RR+ ) )
126, 10, 11mpbir2an 891 . 2  |-  ( exp  |`  RR ) : RR --> RR+
13 fvres 5364 . . . . 5  |-  ( y  e.  RR  ->  (
( exp  |`  RR ) `
 y )  =  ( exp `  y
) )
147, 13eqeqan12d 2110 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( exp  |`  RR ) `  x
)  =  ( ( exp  |`  RR ) `  y )  <->  ( exp `  x )  =  ( exp `  y ) ) )
15 reef11 11154 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( exp `  x
)  =  ( exp `  y )  <->  x  =  y ) )
1615biimpd 143 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( exp `  x
)  =  ( exp `  y )  ->  x  =  y ) )
1714, 16sylbid 149 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( exp  |`  RR ) `  x
)  =  ( ( exp  |`  RR ) `  y )  ->  x  =  y ) )
1817rgen2a 2440 . 2  |-  A. x  e.  RR  A. y  e.  RR  ( ( ( exp  |`  RR ) `  x )  =  ( ( exp  |`  RR ) `
 y )  ->  x  =  y )
19 dff13 5585 . 2  |-  ( ( exp  |`  RR ) : RR -1-1-> RR+  <->  ( ( exp  |`  RR ) : RR --> RR+ 
/\  A. x  e.  RR  A. y  e.  RR  (
( ( exp  |`  RR ) `
 x )  =  ( ( exp  |`  RR ) `
 y )  ->  x  =  y )
) )
2012, 18, 19mpbir2an 891 1  |-  ( exp  |`  RR ) : RR -1-1-> RR+
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1296    e. wcel 1445   A.wral 2370    C_ wss 3013    |` cres 4469    Fn wfn 5044   -->wf 5045   -1-1->wf1 5046   ` cfv 5049   CCcc 7445   RRcr 7446   RR+crp 9233   expce 11096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-disj 3845  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-frec 6194  df-1o 6219  df-oadd 6223  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-ico 9460  df-fz 9574  df-fzo 9703  df-iseq 10002  df-seq3 10003  df-exp 10086  df-fac 10265  df-bc 10287  df-ihash 10315  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-clim 10838  df-sumdc 10912  df-ef 11102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator