| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ivthreinc | Unicode version | ||
| Description: Restating the
intermediate value theorem.  Given a hypothesis stating
       the intermediate value theorem (in a strong form which is not provable
       given our axioms alone), provide a conclusion similar to the theorem as
       stated in the Metamath Proof Explorer (which is also similar to how we
       state the theorem for a strictly monotonic function at ivthinc 14879).
       Being able to have a hypothesis stating the intermediate value theorem
       will be helpful when it comes time to show that it implies a
       constructive taboo.  This version of the theorem requires that the
       function  | 
| Ref | Expression | 
|---|---|
| ivthreinc.1 | 
 | 
| ivthreinc.2 | 
 | 
| ivthreinc.3 | 
 | 
| ivthreinc.4 | 
 | 
| ivthreinc.7 | 
 | 
| ivthreinc.9 | 
 | 
| ivthreinc.i | 
 | 
| Ref | Expression | 
|---|---|
| ivthreinc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ivthreinc.4 | 
. . . 4
 | |
| 2 | eqid 2196 | 
. . . . . 6
 | |
| 3 | fveq2 5558 | 
. . . . . . 7
 | |
| 4 | 3 | oveq1d 5937 | 
. . . . . 6
 | 
| 5 | ivthreinc.1 | 
. . . . . 6
 | |
| 6 | ivthreinc.7 | 
. . . . . . . . 9
 | |
| 7 | cncff 14813 | 
. . . . . . . . 9
 | |
| 8 | 6, 7 | syl 14 | 
. . . . . . . 8
 | 
| 9 | 8, 5 | ffvelcdmd 5698 | 
. . . . . . 7
 | 
| 10 | ivthreinc.3 | 
. . . . . . 7
 | |
| 11 | 9, 10 | resubcld 8407 | 
. . . . . 6
 | 
| 12 | 2, 4, 5, 11 | fvmptd3 5655 | 
. . . . 5
 | 
| 13 | ivthreinc.9 | 
. . . . . . 7
 | |
| 14 | 13 | simpld 112 | 
. . . . . 6
 | 
| 15 | 9, 10 | sublt0d 8597 | 
. . . . . 6
 | 
| 16 | 14, 15 | mpbird 167 | 
. . . . 5
 | 
| 17 | 12, 16 | eqbrtrd 4055 | 
. . . 4
 | 
| 18 | 13 | simprd 114 | 
. . . . . 6
 | 
| 19 | ivthreinc.2 | 
. . . . . . . 8
 | |
| 20 | 8, 19 | ffvelcdmd 5698 | 
. . . . . . 7
 | 
| 21 | 10, 20 | posdifd 8559 | 
. . . . . 6
 | 
| 22 | 18, 21 | mpbid 147 | 
. . . . 5
 | 
| 23 | fveq2 5558 | 
. . . . . . 7
 | |
| 24 | 23 | oveq1d 5937 | 
. . . . . 6
 | 
| 25 | 20, 10 | resubcld 8407 | 
. . . . . 6
 | 
| 26 | 2, 24, 19, 25 | fvmptd3 5655 | 
. . . . 5
 | 
| 27 | 22, 26 | breqtrrd 4061 | 
. . . 4
 | 
| 28 | 1, 17, 27 | 3jca 1179 | 
. . 3
 | 
| 29 | breq2 4037 | 
. . . . . 6
 | |
| 30 | fveq2 5558 | 
. . . . . . 7
 | |
| 31 | 30 | breq2d 4045 | 
. . . . . 6
 | 
| 32 | 29, 31 | 3anbi13d 1325 | 
. . . . 5
 | 
| 33 | breq2 4037 | 
. . . . . . 7
 | |
| 34 | 33 | 3anbi2d 1328 | 
. . . . . 6
 | 
| 35 | 34 | rexbidv 2498 | 
. . . . 5
 | 
| 36 | 32, 35 | imbi12d 234 | 
. . . 4
 | 
| 37 | breq1 4036 | 
. . . . . . . 8
 | |
| 38 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 39 | 38 | breq1d 4043 | 
. . . . . . . 8
 | 
| 40 | 37, 39 | 3anbi12d 1324 | 
. . . . . . 7
 | 
| 41 | breq1 4036 | 
. . . . . . . . 9
 | |
| 42 | 41 | 3anbi1d 1327 | 
. . . . . . . 8
 | 
| 43 | 42 | rexbidv 2498 | 
. . . . . . 7
 | 
| 44 | 40, 43 | imbi12d 234 | 
. . . . . 6
 | 
| 45 | 44 | ralbidv 2497 | 
. . . . 5
 | 
| 46 | 8 | ffvelcdmda 5697 | 
. . . . . . . . 9
 | 
| 47 | 10 | adantr 276 | 
. . . . . . . . 9
 | 
| 48 | 46, 47 | resubcld 8407 | 
. . . . . . . 8
 | 
| 49 | 48 | fmpttd 5717 | 
. . . . . . 7
 | 
| 50 | ax-resscn 7971 | 
. . . . . . . . 9
 | |
| 51 | 50 | a1i 9 | 
. . . . . . . 8
 | 
| 52 | 8 | feqmptd 5614 | 
. . . . . . . . . 10
 | 
| 53 | ssid 3203 | 
. . . . . . . . . . . 12
 | |
| 54 | cncfss 14819 | 
. . . . . . . . . . . 12
 | |
| 55 | 50, 53, 54 | mp2an 426 | 
. . . . . . . . . . 11
 | 
| 56 | 55, 6 | sselid 3181 | 
. . . . . . . . . 10
 | 
| 57 | 52, 56 | eqeltrrd 2274 | 
. . . . . . . . 9
 | 
| 58 | 10 | recnd 8055 | 
. . . . . . . . . 10
 | 
| 59 | 53 | a1i 9 | 
. . . . . . . . . 10
 | 
| 60 | cncfmptc 14832 | 
. . . . . . . . . 10
 | |
| 61 | 58, 51, 59, 60 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 62 | 57, 61 | subcncf 14849 | 
. . . . . . . 8
 | 
| 63 | cncfcdm 14818 | 
. . . . . . . 8
 | |
| 64 | 51, 62, 63 | syl2anc 411 | 
. . . . . . 7
 | 
| 65 | 49, 64 | mpbird 167 | 
. . . . . 6
 | 
| 66 | ivthreinc.i | 
. . . . . . 7
 | |
| 67 | reex 8013 | 
. . . . . . . . 9
 | |
| 68 | 67 | mptex 5788 | 
. . . . . . . 8
 | 
| 69 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 70 | fveq1 5557 | 
. . . . . . . . . . . . . 14
 | |
| 71 | 70 | breq1d 4043 | 
. . . . . . . . . . . . 13
 | 
| 72 | fveq1 5557 | 
. . . . . . . . . . . . . 14
 | |
| 73 | 72 | breq2d 4045 | 
. . . . . . . . . . . . 13
 | 
| 74 | 71, 73 | 3anbi23d 1326 | 
. . . . . . . . . . . 12
 | 
| 75 | fveq1 5557 | 
. . . . . . . . . . . . . . 15
 | |
| 76 | 75 | eqeq1d 2205 | 
. . . . . . . . . . . . . 14
 | 
| 77 | 76 | 3anbi3d 1329 | 
. . . . . . . . . . . . 13
 | 
| 78 | 77 | rexbidv 2498 | 
. . . . . . . . . . . 12
 | 
| 79 | 74, 78 | imbi12d 234 | 
. . . . . . . . . . 11
 | 
| 80 | 79 | ralbidv 2497 | 
. . . . . . . . . 10
 | 
| 81 | 80 | ralbidv 2497 | 
. . . . . . . . 9
 | 
| 82 | 69, 81 | imbi12d 234 | 
. . . . . . . 8
 | 
| 83 | 68, 82 | spcv 2858 | 
. . . . . . 7
 | 
| 84 | 66, 83 | syl 14 | 
. . . . . 6
 | 
| 85 | 65, 84 | mpd 13 | 
. . . . 5
 | 
| 86 | 45, 85, 5 | rspcdva 2873 | 
. . . 4
 | 
| 87 | 36, 86, 19 | rspcdva 2873 | 
. . 3
 | 
| 88 | 28, 87 | mpd 13 | 
. 2
 | 
| 89 | 5 | adantr 276 | 
. . . . . 6
 | 
| 90 | 89 | rexrd 8076 | 
. . . . 5
 | 
| 91 | 19 | adantr 276 | 
. . . . . 6
 | 
| 92 | 91 | rexrd 8076 | 
. . . . 5
 | 
| 93 | simprl 529 | 
. . . . 5
 | |
| 94 | 90, 92, 93 | 3jca 1179 | 
. . . 4
 | 
| 95 | simprr1 1047 | 
. . . . 5
 | |
| 96 | simprr2 1048 | 
. . . . 5
 | |
| 97 | 95, 96 | jca 306 | 
. . . 4
 | 
| 98 | elioo4g 10009 | 
. . . 4
 | |
| 99 | 94, 97, 98 | sylanbrc 417 | 
. . 3
 | 
| 100 | 8 | adantr 276 | 
. . . . . 6
 | 
| 101 | 100, 93 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 102 | 101 | recnd 8055 | 
. . . 4
 | 
| 103 | 58 | adantr 276 | 
. . . 4
 | 
| 104 | fveq2 5558 | 
. . . . . . 7
 | |
| 105 | 104 | oveq1d 5937 | 
. . . . . 6
 | 
| 106 | 10 | adantr 276 | 
. . . . . . 7
 | 
| 107 | 101, 106 | resubcld 8407 | 
. . . . . 6
 | 
| 108 | 2, 105, 93, 107 | fvmptd3 5655 | 
. . . . 5
 | 
| 109 | simprr3 1049 | 
. . . . 5
 | |
| 110 | 108, 109 | eqtr3d 2231 | 
. . . 4
 | 
| 111 | 102, 103, 110 | subeq0d 8345 | 
. . 3
 | 
| 112 | fveqeq2 5567 | 
. . . 4
 | |
| 113 | 112 | rspcev 2868 | 
. . 3
 | 
| 114 | 99, 111, 113 | syl2anc 411 | 
. 2
 | 
| 115 | 88, 114 | rexlimddv 2619 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 | 
| This theorem is referenced by: ivthdichlem 14887 | 
| Copyright terms: Public domain | W3C validator |