ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthreinc Unicode version

Theorem ivthreinc 15161
Description: Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 15159). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function  F is continuous on the entire real line, not just  ( A [,] B ) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.)
Hypotheses
Ref Expression
ivthreinc.1  |-  ( ph  ->  A  e.  RR )
ivthreinc.2  |-  ( ph  ->  B  e.  RR )
ivthreinc.3  |-  ( ph  ->  U  e.  RR )
ivthreinc.4  |-  ( ph  ->  A  <  B )
ivthreinc.7  |-  ( ph  ->  F  e.  ( RR
-cn-> RR ) )
ivthreinc.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthreinc.i  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
Assertion
Ref Expression
ivthreinc  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Distinct variable groups:    A, a, b, x    A, c, x    B, b, x    B, c    F, a, b, f, x    F, c    U, a, b, f, x    U, c    ph, x
Allowed substitution hints:    ph( f, a, b, c)    A( f)    B( f, a)

Proof of Theorem ivthreinc
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 ivthreinc.4 . . . 4  |-  ( ph  ->  A  <  B )
2 eqid 2206 . . . . . 6  |-  ( r  e.  RR  |->  ( ( F `  r )  -  U ) )  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )
3 fveq2 5583 . . . . . . 7  |-  ( r  =  A  ->  ( F `  r )  =  ( F `  A ) )
43oveq1d 5966 . . . . . 6  |-  ( r  =  A  ->  (
( F `  r
)  -  U )  =  ( ( F `
 A )  -  U ) )
5 ivthreinc.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
6 ivthreinc.7 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( RR
-cn-> RR ) )
7 cncff 15093 . . . . . . . . 9  |-  ( F  e.  ( RR -cn-> RR )  ->  F : RR
--> RR )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  F : RR --> RR )
98, 5ffvelcdmd 5723 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR )
10 ivthreinc.3 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
119, 10resubcld 8460 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  -  U
)  e.  RR )
122, 4, 5, 11fvmptd3 5680 . . . . 5  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  =  ( ( F `  A
)  -  U ) )
13 ivthreinc.9 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1413simpld 112 . . . . . 6  |-  ( ph  ->  ( F `  A
)  <  U )
159, 10sublt0d 8650 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 A )  -  U )  <  0  <->  ( F `  A )  <  U ) )
1614, 15mpbird 167 . . . . 5  |-  ( ph  ->  ( ( F `  A )  -  U
)  <  0 )
1712, 16eqbrtrd 4069 . . . 4  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  <  0
)
1813simprd 114 . . . . . 6  |-  ( ph  ->  U  <  ( F `
 B ) )
19 ivthreinc.2 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
208, 19ffvelcdmd 5723 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  RR )
2110, 20posdifd 8612 . . . . . 6  |-  ( ph  ->  ( U  <  ( F `  B )  <->  0  <  ( ( F `
 B )  -  U ) ) )
2218, 21mpbid 147 . . . . 5  |-  ( ph  ->  0  <  ( ( F `  B )  -  U ) )
23 fveq2 5583 . . . . . . 7  |-  ( r  =  B  ->  ( F `  r )  =  ( F `  B ) )
2423oveq1d 5966 . . . . . 6  |-  ( r  =  B  ->  (
( F `  r
)  -  U )  =  ( ( F `
 B )  -  U ) )
2520, 10resubcld 8460 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  -  U
)  e.  RR )
262, 24, 19, 25fvmptd3 5680 . . . . 5  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  B )  =  ( ( F `  B
)  -  U ) )
2722, 26breqtrrd 4075 . . . 4  |-  ( ph  ->  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) )
281, 17, 273jca 1180 . . 3  |-  ( ph  ->  ( A  <  B  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) ) )
29 breq2 4051 . . . . . 6  |-  ( b  =  B  ->  ( A  <  b  <->  A  <  B ) )
30 fveq2 5583 . . . . . . 7  |-  ( b  =  B  ->  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  b
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) )
3130breq2d 4059 . . . . . 6  |-  ( b  =  B  ->  (
0  <  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b )  <->  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) ) )
3229, 313anbi13d 1327 . . . . 5  |-  ( b  =  B  ->  (
( A  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  <->  ( A  < 
B  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  B ) ) ) )
33 breq2 4051 . . . . . . 7  |-  ( b  =  B  ->  (
x  <  b  <->  x  <  B ) )
34333anbi2d 1330 . . . . . 6  |-  ( b  =  B  ->  (
( A  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 )  <->  ( A  < 
x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
3534rexbidv 2508 . . . . 5  |-  ( b  =  B  ->  ( E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 )  <->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
3632, 35imbi12d 234 . . . 4  |-  ( b  =  B  ->  (
( ( A  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) )  <->  ( ( A  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 B ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) ) )
37 breq1 4050 . . . . . . . 8  |-  ( a  =  A  ->  (
a  <  b  <->  A  <  b ) )
38 fveq2 5583 . . . . . . . . 9  |-  ( a  =  A  ->  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A ) )
3938breq1d 4057 . . . . . . . 8  |-  ( a  =  A  ->  (
( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  <->  ( ( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0 ) )
4037, 393anbi12d 1326 . . . . . . 7  |-  ( a  =  A  ->  (
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  <->  ( A  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) ) ) )
41 breq1 4050 . . . . . . . . 9  |-  ( a  =  A  ->  (
a  <  x  <->  A  <  x ) )
42413anbi1d 1329 . . . . . . . 8  |-  ( a  =  A  ->  (
( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 )  <->  ( A  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
4342rexbidv 2508 . . . . . . 7  |-  ( a  =  A  ->  ( E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 )  <->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
4440, 43imbi12d 234 . . . . . 6  |-  ( a  =  A  ->  (
( ( a  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) )  <->  ( ( A  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) ) )
4544ralbidv 2507 . . . . 5  |-  ( a  =  A  ->  ( A. b  e.  RR  ( ( a  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) )  <->  A. b  e.  RR  ( ( A  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) ) )
468ffvelcdmda 5722 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR )  ->  ( F `
 r )  e.  RR )
4710adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR )  ->  U  e.  RR )
4846, 47resubcld 8460 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR )  ->  ( ( F `  r )  -  U )  e.  RR )
4948fmpttd 5742 . . . . . . 7  |-  ( ph  ->  ( r  e.  RR  |->  ( ( F `  r )  -  U
) ) : RR --> RR )
50 ax-resscn 8024 . . . . . . . . 9  |-  RR  C_  CC
5150a1i 9 . . . . . . . 8  |-  ( ph  ->  RR  C_  CC )
528feqmptd 5639 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( r  e.  RR  |->  ( F `
 r ) ) )
53 ssid 3214 . . . . . . . . . . . 12  |-  CC  C_  CC
54 cncfss 15099 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR -cn-> RR )  C_  ( RR -cn-> CC ) )
5550, 53, 54mp2an 426 . . . . . . . . . . 11  |-  ( RR
-cn-> RR )  C_  ( RR -cn-> CC )
5655, 6sselid 3192 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( RR
-cn-> CC ) )
5752, 56eqeltrrd 2284 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  RR  |->  ( F `  r ) )  e.  ( RR
-cn-> CC ) )
5810recnd 8108 . . . . . . . . . 10  |-  ( ph  ->  U  e.  CC )
5953a1i 9 . . . . . . . . . 10  |-  ( ph  ->  CC  C_  CC )
60 cncfmptc 15112 . . . . . . . . . 10  |-  ( ( U  e.  CC  /\  RR  C_  CC  /\  CC  C_  CC )  ->  (
r  e.  RR  |->  U )  e.  ( RR
-cn-> CC ) )
6158, 51, 59, 60syl3anc 1250 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  RR  |->  U )  e.  ( RR -cn-> CC ) )
6257, 61subcncf 15129 . . . . . . . 8  |-  ( ph  ->  ( r  e.  RR  |->  ( ( F `  r )  -  U
) )  e.  ( RR -cn-> CC ) )
63 cncfcdm 15098 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  (
r  e.  RR  |->  ( ( F `  r
)  -  U ) )  e.  ( RR
-cn-> CC ) )  -> 
( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR )  <-> 
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) : RR --> RR ) )
6451, 62, 63syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR )  <-> 
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) : RR --> RR ) )
6549, 64mpbird 167 . . . . . 6  |-  ( ph  ->  ( r  e.  RR  |->  ( ( F `  r )  -  U
) )  e.  ( RR -cn-> RR ) )
66 ivthreinc.i . . . . . . 7  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
67 reex 8066 . . . . . . . . 9  |-  RR  e.  _V
6867mptex 5817 . . . . . . . 8  |-  ( r  e.  RR  |->  ( ( F `  r )  -  U ) )  e.  _V
69 eleq1 2269 . . . . . . . . 9  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f  e.  ( RR -cn-> RR )  <->  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR ) ) )
70 fveq1 5582 . . . . . . . . . . . . . 14  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f `  a
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  a ) )
7170breq1d 4057 . . . . . . . . . . . . 13  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( f `  a )  <  0  <->  ( ( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0 ) )
72 fveq1 5582 . . . . . . . . . . . . . 14  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f `  b
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )
7372breq2d 4059 . . . . . . . . . . . . 13  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( 0  <  (
f `  b )  <->  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) ) )
7471, 733anbi23d 1328 . . . . . . . . . . . 12  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( a  < 
b  /\  ( f `  a )  <  0  /\  0  <  ( f `
 b ) )  <-> 
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) ) ) )
75 fveq1 5582 . . . . . . . . . . . . . . 15  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f `  x
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x ) )
7675eqeq1d 2215 . . . . . . . . . . . . . 14  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( f `  x )  =  0  <-> 
( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) )
77763anbi3d 1331 . . . . . . . . . . . . 13  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 )  <->  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
7877rexbidv 2508 . . . . . . . . . . . 12  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 )  <->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) )
7974, 78imbi12d 234 . . . . . . . . . . 11  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) )  <->  ( (
a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) ) )
8079ralbidv 2507 . . . . . . . . . 10  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) )  <->  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) )
8180ralbidv 2507 . . . . . . . . 9  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) )  <->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) )
8269, 81imbi12d 234 . . . . . . . 8  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  <->  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) )  e.  ( RR
-cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) ) )
8368, 82spcv 2868 . . . . . . 7  |-  ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  ->  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) )  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) )
8466, 83syl 14 . . . . . 6  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) ) )
8565, 84mpd 13 . . . . 5  |-  ( ph  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
8645, 85, 5rspcdva 2883 . . . 4  |-  ( ph  ->  A. b  e.  RR  ( ( A  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
8736, 86, 19rspcdva 2883 . . 3  |-  ( ph  ->  ( ( A  < 
B  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  B ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
8828, 87mpd 13 . 2  |-  ( ph  ->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) )
895adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  A  e.  RR )
9089rexrd 8129 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  A  e.  RR* )
9119adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  B  e.  RR )
9291rexrd 8129 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  B  e.  RR* )
93 simprl 529 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  x  e.  RR )
9490, 92, 933jca 1180 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( A  e.  RR*  /\  B  e. 
RR*  /\  x  e.  RR ) )
95 simprr1 1048 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  A  <  x )
96 simprr2 1049 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  x  <  B )
9795, 96jca 306 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( A  <  x  /\  x  < 
B ) )
98 elioo4g 10063 . . . 4  |-  ( x  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR )  /\  ( A  <  x  /\  x  <  B ) ) )
9994, 97, 98sylanbrc 417 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  x  e.  ( A (,) B ) )
1008adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  F : RR
--> RR )
101100, 93ffvelcdmd 5723 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( F `  x )  e.  RR )
102101recnd 8108 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( F `  x )  e.  CC )
10358adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  U  e.  CC )
104 fveq2 5583 . . . . . . 7  |-  ( r  =  x  ->  ( F `  r )  =  ( F `  x ) )
105104oveq1d 5966 . . . . . 6  |-  ( r  =  x  ->  (
( F `  r
)  -  U )  =  ( ( F `
 x )  -  U ) )
10610adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  U  e.  RR )
107101, 106resubcld 8460 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( ( F `  x )  -  U )  e.  RR )
1082, 105, 93, 107fvmptd3 5680 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  ( ( F `
 x )  -  U ) )
109 simprr3 1050 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 )
110108, 109eqtr3d 2241 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( ( F `  x )  -  U )  =  0 )
111102, 103, 110subeq0d 8398 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( F `  x )  =  U )
112 fveqeq2 5592 . . . 4  |-  ( c  =  x  ->  (
( F `  c
)  =  U  <->  ( F `  x )  =  U ) )
113112rspcev 2878 . . 3  |-  ( ( x  e.  ( A (,) B )  /\  ( F `  x )  =  U )  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
11499, 111, 113syl2anc 411 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  E. c  e.  ( A (,) B
) ( F `  c )  =  U )
11588, 114rexlimddv 2629 1  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486    C_ wss 3167   class class class wbr 4047    |-> cmpt 4109   -->wf 5272   ` cfv 5276  (class class class)co 5951   CCcc 7930   RRcr 7931   0cc0 7932   RR*cxr 8113    < clt 8114    - cmin 8250   (,)cioo 10017   -cn->ccncf 15086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-ioo 10021  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-cn 14704  df-cnp 14705  df-tx 14769  df-cncf 15087
This theorem is referenced by:  ivthdichlem  15167
  Copyright terms: Public domain W3C validator