| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthreinc | Unicode version | ||
| Description: Restating the
intermediate value theorem. Given a hypothesis stating
the intermediate value theorem (in a strong form which is not provable
given our axioms alone), provide a conclusion similar to the theorem as
stated in the Metamath Proof Explorer (which is also similar to how we
state the theorem for a strictly monotonic function at ivthinc 15159).
Being able to have a hypothesis stating the intermediate value theorem
will be helpful when it comes time to show that it implies a
constructive taboo. This version of the theorem requires that the
function |
| Ref | Expression |
|---|---|
| ivthreinc.1 |
|
| ivthreinc.2 |
|
| ivthreinc.3 |
|
| ivthreinc.4 |
|
| ivthreinc.7 |
|
| ivthreinc.9 |
|
| ivthreinc.i |
|
| Ref | Expression |
|---|---|
| ivthreinc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivthreinc.4 |
. . . 4
| |
| 2 | eqid 2206 |
. . . . . 6
| |
| 3 | fveq2 5583 |
. . . . . . 7
| |
| 4 | 3 | oveq1d 5966 |
. . . . . 6
|
| 5 | ivthreinc.1 |
. . . . . 6
| |
| 6 | ivthreinc.7 |
. . . . . . . . 9
| |
| 7 | cncff 15093 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
|
| 9 | 8, 5 | ffvelcdmd 5723 |
. . . . . . 7
|
| 10 | ivthreinc.3 |
. . . . . . 7
| |
| 11 | 9, 10 | resubcld 8460 |
. . . . . 6
|
| 12 | 2, 4, 5, 11 | fvmptd3 5680 |
. . . . 5
|
| 13 | ivthreinc.9 |
. . . . . . 7
| |
| 14 | 13 | simpld 112 |
. . . . . 6
|
| 15 | 9, 10 | sublt0d 8650 |
. . . . . 6
|
| 16 | 14, 15 | mpbird 167 |
. . . . 5
|
| 17 | 12, 16 | eqbrtrd 4069 |
. . . 4
|
| 18 | 13 | simprd 114 |
. . . . . 6
|
| 19 | ivthreinc.2 |
. . . . . . . 8
| |
| 20 | 8, 19 | ffvelcdmd 5723 |
. . . . . . 7
|
| 21 | 10, 20 | posdifd 8612 |
. . . . . 6
|
| 22 | 18, 21 | mpbid 147 |
. . . . 5
|
| 23 | fveq2 5583 |
. . . . . . 7
| |
| 24 | 23 | oveq1d 5966 |
. . . . . 6
|
| 25 | 20, 10 | resubcld 8460 |
. . . . . 6
|
| 26 | 2, 24, 19, 25 | fvmptd3 5680 |
. . . . 5
|
| 27 | 22, 26 | breqtrrd 4075 |
. . . 4
|
| 28 | 1, 17, 27 | 3jca 1180 |
. . 3
|
| 29 | breq2 4051 |
. . . . . 6
| |
| 30 | fveq2 5583 |
. . . . . . 7
| |
| 31 | 30 | breq2d 4059 |
. . . . . 6
|
| 32 | 29, 31 | 3anbi13d 1327 |
. . . . 5
|
| 33 | breq2 4051 |
. . . . . . 7
| |
| 34 | 33 | 3anbi2d 1330 |
. . . . . 6
|
| 35 | 34 | rexbidv 2508 |
. . . . 5
|
| 36 | 32, 35 | imbi12d 234 |
. . . 4
|
| 37 | breq1 4050 |
. . . . . . . 8
| |
| 38 | fveq2 5583 |
. . . . . . . . 9
| |
| 39 | 38 | breq1d 4057 |
. . . . . . . 8
|
| 40 | 37, 39 | 3anbi12d 1326 |
. . . . . . 7
|
| 41 | breq1 4050 |
. . . . . . . . 9
| |
| 42 | 41 | 3anbi1d 1329 |
. . . . . . . 8
|
| 43 | 42 | rexbidv 2508 |
. . . . . . 7
|
| 44 | 40, 43 | imbi12d 234 |
. . . . . 6
|
| 45 | 44 | ralbidv 2507 |
. . . . 5
|
| 46 | 8 | ffvelcdmda 5722 |
. . . . . . . . 9
|
| 47 | 10 | adantr 276 |
. . . . . . . . 9
|
| 48 | 46, 47 | resubcld 8460 |
. . . . . . . 8
|
| 49 | 48 | fmpttd 5742 |
. . . . . . 7
|
| 50 | ax-resscn 8024 |
. . . . . . . . 9
| |
| 51 | 50 | a1i 9 |
. . . . . . . 8
|
| 52 | 8 | feqmptd 5639 |
. . . . . . . . . 10
|
| 53 | ssid 3214 |
. . . . . . . . . . . 12
| |
| 54 | cncfss 15099 |
. . . . . . . . . . . 12
| |
| 55 | 50, 53, 54 | mp2an 426 |
. . . . . . . . . . 11
|
| 56 | 55, 6 | sselid 3192 |
. . . . . . . . . 10
|
| 57 | 52, 56 | eqeltrrd 2284 |
. . . . . . . . 9
|
| 58 | 10 | recnd 8108 |
. . . . . . . . . 10
|
| 59 | 53 | a1i 9 |
. . . . . . . . . 10
|
| 60 | cncfmptc 15112 |
. . . . . . . . . 10
| |
| 61 | 58, 51, 59, 60 | syl3anc 1250 |
. . . . . . . . 9
|
| 62 | 57, 61 | subcncf 15129 |
. . . . . . . 8
|
| 63 | cncfcdm 15098 |
. . . . . . . 8
| |
| 64 | 51, 62, 63 | syl2anc 411 |
. . . . . . 7
|
| 65 | 49, 64 | mpbird 167 |
. . . . . 6
|
| 66 | ivthreinc.i |
. . . . . . 7
| |
| 67 | reex 8066 |
. . . . . . . . 9
| |
| 68 | 67 | mptex 5817 |
. . . . . . . 8
|
| 69 | eleq1 2269 |
. . . . . . . . 9
| |
| 70 | fveq1 5582 |
. . . . . . . . . . . . . 14
| |
| 71 | 70 | breq1d 4057 |
. . . . . . . . . . . . 13
|
| 72 | fveq1 5582 |
. . . . . . . . . . . . . 14
| |
| 73 | 72 | breq2d 4059 |
. . . . . . . . . . . . 13
|
| 74 | 71, 73 | 3anbi23d 1328 |
. . . . . . . . . . . 12
|
| 75 | fveq1 5582 |
. . . . . . . . . . . . . . 15
| |
| 76 | 75 | eqeq1d 2215 |
. . . . . . . . . . . . . 14
|
| 77 | 76 | 3anbi3d 1331 |
. . . . . . . . . . . . 13
|
| 78 | 77 | rexbidv 2508 |
. . . . . . . . . . . 12
|
| 79 | 74, 78 | imbi12d 234 |
. . . . . . . . . . 11
|
| 80 | 79 | ralbidv 2507 |
. . . . . . . . . 10
|
| 81 | 80 | ralbidv 2507 |
. . . . . . . . 9
|
| 82 | 69, 81 | imbi12d 234 |
. . . . . . . 8
|
| 83 | 68, 82 | spcv 2868 |
. . . . . . 7
|
| 84 | 66, 83 | syl 14 |
. . . . . 6
|
| 85 | 65, 84 | mpd 13 |
. . . . 5
|
| 86 | 45, 85, 5 | rspcdva 2883 |
. . . 4
|
| 87 | 36, 86, 19 | rspcdva 2883 |
. . 3
|
| 88 | 28, 87 | mpd 13 |
. 2
|
| 89 | 5 | adantr 276 |
. . . . . 6
|
| 90 | 89 | rexrd 8129 |
. . . . 5
|
| 91 | 19 | adantr 276 |
. . . . . 6
|
| 92 | 91 | rexrd 8129 |
. . . . 5
|
| 93 | simprl 529 |
. . . . 5
| |
| 94 | 90, 92, 93 | 3jca 1180 |
. . . 4
|
| 95 | simprr1 1048 |
. . . . 5
| |
| 96 | simprr2 1049 |
. . . . 5
| |
| 97 | 95, 96 | jca 306 |
. . . 4
|
| 98 | elioo4g 10063 |
. . . 4
| |
| 99 | 94, 97, 98 | sylanbrc 417 |
. . 3
|
| 100 | 8 | adantr 276 |
. . . . . 6
|
| 101 | 100, 93 | ffvelcdmd 5723 |
. . . . 5
|
| 102 | 101 | recnd 8108 |
. . . 4
|
| 103 | 58 | adantr 276 |
. . . 4
|
| 104 | fveq2 5583 |
. . . . . . 7
| |
| 105 | 104 | oveq1d 5966 |
. . . . . 6
|
| 106 | 10 | adantr 276 |
. . . . . . 7
|
| 107 | 101, 106 | resubcld 8460 |
. . . . . 6
|
| 108 | 2, 105, 93, 107 | fvmptd3 5680 |
. . . . 5
|
| 109 | simprr3 1050 |
. . . . 5
| |
| 110 | 108, 109 | eqtr3d 2241 |
. . . 4
|
| 111 | 102, 103, 110 | subeq0d 8398 |
. . 3
|
| 112 | fveqeq2 5592 |
. . . 4
| |
| 113 | 112 | rspcev 2878 |
. . 3
|
| 114 | 99, 111, 113 | syl2anc 411 |
. 2
|
| 115 | 88, 114 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-map 6744 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-ioo 10021 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-cn 14704 df-cnp 14705 df-tx 14769 df-cncf 15087 |
| This theorem is referenced by: ivthdichlem 15167 |
| Copyright terms: Public domain | W3C validator |