| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthreinc | Unicode version | ||
| Description: Restating the
intermediate value theorem. Given a hypothesis stating
the intermediate value theorem (in a strong form which is not provable
given our axioms alone), provide a conclusion similar to the theorem as
stated in the Metamath Proof Explorer (which is also similar to how we
state the theorem for a strictly monotonic function at ivthinc 15325).
Being able to have a hypothesis stating the intermediate value theorem
will be helpful when it comes time to show that it implies a
constructive taboo. This version of the theorem requires that the
function |
| Ref | Expression |
|---|---|
| ivthreinc.1 |
|
| ivthreinc.2 |
|
| ivthreinc.3 |
|
| ivthreinc.4 |
|
| ivthreinc.7 |
|
| ivthreinc.9 |
|
| ivthreinc.i |
|
| Ref | Expression |
|---|---|
| ivthreinc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivthreinc.4 |
. . . 4
| |
| 2 | eqid 2229 |
. . . . . 6
| |
| 3 | fveq2 5629 |
. . . . . . 7
| |
| 4 | 3 | oveq1d 6022 |
. . . . . 6
|
| 5 | ivthreinc.1 |
. . . . . 6
| |
| 6 | ivthreinc.7 |
. . . . . . . . 9
| |
| 7 | cncff 15259 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
|
| 9 | 8, 5 | ffvelcdmd 5773 |
. . . . . . 7
|
| 10 | ivthreinc.3 |
. . . . . . 7
| |
| 11 | 9, 10 | resubcld 8535 |
. . . . . 6
|
| 12 | 2, 4, 5, 11 | fvmptd3 5730 |
. . . . 5
|
| 13 | ivthreinc.9 |
. . . . . . 7
| |
| 14 | 13 | simpld 112 |
. . . . . 6
|
| 15 | 9, 10 | sublt0d 8725 |
. . . . . 6
|
| 16 | 14, 15 | mpbird 167 |
. . . . 5
|
| 17 | 12, 16 | eqbrtrd 4105 |
. . . 4
|
| 18 | 13 | simprd 114 |
. . . . . 6
|
| 19 | ivthreinc.2 |
. . . . . . . 8
| |
| 20 | 8, 19 | ffvelcdmd 5773 |
. . . . . . 7
|
| 21 | 10, 20 | posdifd 8687 |
. . . . . 6
|
| 22 | 18, 21 | mpbid 147 |
. . . . 5
|
| 23 | fveq2 5629 |
. . . . . . 7
| |
| 24 | 23 | oveq1d 6022 |
. . . . . 6
|
| 25 | 20, 10 | resubcld 8535 |
. . . . . 6
|
| 26 | 2, 24, 19, 25 | fvmptd3 5730 |
. . . . 5
|
| 27 | 22, 26 | breqtrrd 4111 |
. . . 4
|
| 28 | 1, 17, 27 | 3jca 1201 |
. . 3
|
| 29 | breq2 4087 |
. . . . . 6
| |
| 30 | fveq2 5629 |
. . . . . . 7
| |
| 31 | 30 | breq2d 4095 |
. . . . . 6
|
| 32 | 29, 31 | 3anbi13d 1348 |
. . . . 5
|
| 33 | breq2 4087 |
. . . . . . 7
| |
| 34 | 33 | 3anbi2d 1351 |
. . . . . 6
|
| 35 | 34 | rexbidv 2531 |
. . . . 5
|
| 36 | 32, 35 | imbi12d 234 |
. . . 4
|
| 37 | breq1 4086 |
. . . . . . . 8
| |
| 38 | fveq2 5629 |
. . . . . . . . 9
| |
| 39 | 38 | breq1d 4093 |
. . . . . . . 8
|
| 40 | 37, 39 | 3anbi12d 1347 |
. . . . . . 7
|
| 41 | breq1 4086 |
. . . . . . . . 9
| |
| 42 | 41 | 3anbi1d 1350 |
. . . . . . . 8
|
| 43 | 42 | rexbidv 2531 |
. . . . . . 7
|
| 44 | 40, 43 | imbi12d 234 |
. . . . . 6
|
| 45 | 44 | ralbidv 2530 |
. . . . 5
|
| 46 | 8 | ffvelcdmda 5772 |
. . . . . . . . 9
|
| 47 | 10 | adantr 276 |
. . . . . . . . 9
|
| 48 | 46, 47 | resubcld 8535 |
. . . . . . . 8
|
| 49 | 48 | fmpttd 5792 |
. . . . . . 7
|
| 50 | ax-resscn 8099 |
. . . . . . . . 9
| |
| 51 | 50 | a1i 9 |
. . . . . . . 8
|
| 52 | 8 | feqmptd 5689 |
. . . . . . . . . 10
|
| 53 | ssid 3244 |
. . . . . . . . . . . 12
| |
| 54 | cncfss 15265 |
. . . . . . . . . . . 12
| |
| 55 | 50, 53, 54 | mp2an 426 |
. . . . . . . . . . 11
|
| 56 | 55, 6 | sselid 3222 |
. . . . . . . . . 10
|
| 57 | 52, 56 | eqeltrrd 2307 |
. . . . . . . . 9
|
| 58 | 10 | recnd 8183 |
. . . . . . . . . 10
|
| 59 | 53 | a1i 9 |
. . . . . . . . . 10
|
| 60 | cncfmptc 15278 |
. . . . . . . . . 10
| |
| 61 | 58, 51, 59, 60 | syl3anc 1271 |
. . . . . . . . 9
|
| 62 | 57, 61 | subcncf 15295 |
. . . . . . . 8
|
| 63 | cncfcdm 15264 |
. . . . . . . 8
| |
| 64 | 51, 62, 63 | syl2anc 411 |
. . . . . . 7
|
| 65 | 49, 64 | mpbird 167 |
. . . . . 6
|
| 66 | ivthreinc.i |
. . . . . . 7
| |
| 67 | reex 8141 |
. . . . . . . . 9
| |
| 68 | 67 | mptex 5869 |
. . . . . . . 8
|
| 69 | eleq1 2292 |
. . . . . . . . 9
| |
| 70 | fveq1 5628 |
. . . . . . . . . . . . . 14
| |
| 71 | 70 | breq1d 4093 |
. . . . . . . . . . . . 13
|
| 72 | fveq1 5628 |
. . . . . . . . . . . . . 14
| |
| 73 | 72 | breq2d 4095 |
. . . . . . . . . . . . 13
|
| 74 | 71, 73 | 3anbi23d 1349 |
. . . . . . . . . . . 12
|
| 75 | fveq1 5628 |
. . . . . . . . . . . . . . 15
| |
| 76 | 75 | eqeq1d 2238 |
. . . . . . . . . . . . . 14
|
| 77 | 76 | 3anbi3d 1352 |
. . . . . . . . . . . . 13
|
| 78 | 77 | rexbidv 2531 |
. . . . . . . . . . . 12
|
| 79 | 74, 78 | imbi12d 234 |
. . . . . . . . . . 11
|
| 80 | 79 | ralbidv 2530 |
. . . . . . . . . 10
|
| 81 | 80 | ralbidv 2530 |
. . . . . . . . 9
|
| 82 | 69, 81 | imbi12d 234 |
. . . . . . . 8
|
| 83 | 68, 82 | spcv 2897 |
. . . . . . 7
|
| 84 | 66, 83 | syl 14 |
. . . . . 6
|
| 85 | 65, 84 | mpd 13 |
. . . . 5
|
| 86 | 45, 85, 5 | rspcdva 2912 |
. . . 4
|
| 87 | 36, 86, 19 | rspcdva 2912 |
. . 3
|
| 88 | 28, 87 | mpd 13 |
. 2
|
| 89 | 5 | adantr 276 |
. . . . . 6
|
| 90 | 89 | rexrd 8204 |
. . . . 5
|
| 91 | 19 | adantr 276 |
. . . . . 6
|
| 92 | 91 | rexrd 8204 |
. . . . 5
|
| 93 | simprl 529 |
. . . . 5
| |
| 94 | 90, 92, 93 | 3jca 1201 |
. . . 4
|
| 95 | simprr1 1069 |
. . . . 5
| |
| 96 | simprr2 1070 |
. . . . 5
| |
| 97 | 95, 96 | jca 306 |
. . . 4
|
| 98 | elioo4g 10138 |
. . . 4
| |
| 99 | 94, 97, 98 | sylanbrc 417 |
. . 3
|
| 100 | 8 | adantr 276 |
. . . . . 6
|
| 101 | 100, 93 | ffvelcdmd 5773 |
. . . . 5
|
| 102 | 101 | recnd 8183 |
. . . 4
|
| 103 | 58 | adantr 276 |
. . . 4
|
| 104 | fveq2 5629 |
. . . . . . 7
| |
| 105 | 104 | oveq1d 6022 |
. . . . . 6
|
| 106 | 10 | adantr 276 |
. . . . . . 7
|
| 107 | 101, 106 | resubcld 8535 |
. . . . . 6
|
| 108 | 2, 105, 93, 107 | fvmptd3 5730 |
. . . . 5
|
| 109 | simprr3 1071 |
. . . . 5
| |
| 110 | 108, 109 | eqtr3d 2264 |
. . . 4
|
| 111 | 102, 103, 110 | subeq0d 8473 |
. . 3
|
| 112 | fveqeq2 5638 |
. . . 4
| |
| 113 | 112 | rspcev 2907 |
. . 3
|
| 114 | 99, 111, 113 | syl2anc 411 |
. 2
|
| 115 | 88, 114 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-map 6805 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-ioo 10096 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-cn 14870 df-cnp 14871 df-tx 14935 df-cncf 15253 |
| This theorem is referenced by: ivthdichlem 15333 |
| Copyright terms: Public domain | W3C validator |