ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthreinc Unicode version

Theorem ivthreinc 15284
Description: Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 15282). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function  F is continuous on the entire real line, not just  ( A [,] B ) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.)
Hypotheses
Ref Expression
ivthreinc.1  |-  ( ph  ->  A  e.  RR )
ivthreinc.2  |-  ( ph  ->  B  e.  RR )
ivthreinc.3  |-  ( ph  ->  U  e.  RR )
ivthreinc.4  |-  ( ph  ->  A  <  B )
ivthreinc.7  |-  ( ph  ->  F  e.  ( RR
-cn-> RR ) )
ivthreinc.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthreinc.i  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
Assertion
Ref Expression
ivthreinc  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Distinct variable groups:    A, a, b, x    A, c, x    B, b, x    B, c    F, a, b, f, x    F, c    U, a, b, f, x    U, c    ph, x
Allowed substitution hints:    ph( f, a, b, c)    A( f)    B( f, a)

Proof of Theorem ivthreinc
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 ivthreinc.4 . . . 4  |-  ( ph  ->  A  <  B )
2 eqid 2209 . . . . . 6  |-  ( r  e.  RR  |->  ( ( F `  r )  -  U ) )  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )
3 fveq2 5603 . . . . . . 7  |-  ( r  =  A  ->  ( F `  r )  =  ( F `  A ) )
43oveq1d 5989 . . . . . 6  |-  ( r  =  A  ->  (
( F `  r
)  -  U )  =  ( ( F `
 A )  -  U ) )
5 ivthreinc.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
6 ivthreinc.7 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( RR
-cn-> RR ) )
7 cncff 15216 . . . . . . . . 9  |-  ( F  e.  ( RR -cn-> RR )  ->  F : RR
--> RR )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  F : RR --> RR )
98, 5ffvelcdmd 5744 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR )
10 ivthreinc.3 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
119, 10resubcld 8495 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  -  U
)  e.  RR )
122, 4, 5, 11fvmptd3 5701 . . . . 5  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  =  ( ( F `  A
)  -  U ) )
13 ivthreinc.9 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1413simpld 112 . . . . . 6  |-  ( ph  ->  ( F `  A
)  <  U )
159, 10sublt0d 8685 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 A )  -  U )  <  0  <->  ( F `  A )  <  U ) )
1614, 15mpbird 167 . . . . 5  |-  ( ph  ->  ( ( F `  A )  -  U
)  <  0 )
1712, 16eqbrtrd 4084 . . . 4  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  <  0
)
1813simprd 114 . . . . . 6  |-  ( ph  ->  U  <  ( F `
 B ) )
19 ivthreinc.2 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
208, 19ffvelcdmd 5744 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  RR )
2110, 20posdifd 8647 . . . . . 6  |-  ( ph  ->  ( U  <  ( F `  B )  <->  0  <  ( ( F `
 B )  -  U ) ) )
2218, 21mpbid 147 . . . . 5  |-  ( ph  ->  0  <  ( ( F `  B )  -  U ) )
23 fveq2 5603 . . . . . . 7  |-  ( r  =  B  ->  ( F `  r )  =  ( F `  B ) )
2423oveq1d 5989 . . . . . 6  |-  ( r  =  B  ->  (
( F `  r
)  -  U )  =  ( ( F `
 B )  -  U ) )
2520, 10resubcld 8495 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  -  U
)  e.  RR )
262, 24, 19, 25fvmptd3 5701 . . . . 5  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  B )  =  ( ( F `  B
)  -  U ) )
2722, 26breqtrrd 4090 . . . 4  |-  ( ph  ->  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) )
281, 17, 273jca 1182 . . 3  |-  ( ph  ->  ( A  <  B  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) ) )
29 breq2 4066 . . . . . 6  |-  ( b  =  B  ->  ( A  <  b  <->  A  <  B ) )
30 fveq2 5603 . . . . . . 7  |-  ( b  =  B  ->  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  b
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) )
3130breq2d 4074 . . . . . 6  |-  ( b  =  B  ->  (
0  <  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b )  <->  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  B ) ) )
3229, 313anbi13d 1329 . . . . 5  |-  ( b  =  B  ->  (
( A  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  <->  ( A  < 
B  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  B ) ) ) )
33 breq2 4066 . . . . . . 7  |-  ( b  =  B  ->  (
x  <  b  <->  x  <  B ) )
34333anbi2d 1332 . . . . . 6  |-  ( b  =  B  ->  (
( A  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 )  <->  ( A  < 
x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
3534rexbidv 2511 . . . . 5  |-  ( b  =  B  ->  ( E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 )  <->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
3632, 35imbi12d 234 . . . 4  |-  ( b  =  B  ->  (
( ( A  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) )  <->  ( ( A  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 B ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) ) )
37 breq1 4065 . . . . . . . 8  |-  ( a  =  A  ->  (
a  <  b  <->  A  <  b ) )
38 fveq2 5603 . . . . . . . . 9  |-  ( a  =  A  ->  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A ) )
3938breq1d 4072 . . . . . . . 8  |-  ( a  =  A  ->  (
( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  <->  ( ( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0 ) )
4037, 393anbi12d 1328 . . . . . . 7  |-  ( a  =  A  ->  (
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  <->  ( A  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) ) ) )
41 breq1 4065 . . . . . . . . 9  |-  ( a  =  A  ->  (
a  <  x  <->  A  <  x ) )
42413anbi1d 1331 . . . . . . . 8  |-  ( a  =  A  ->  (
( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 )  <->  ( A  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
4342rexbidv 2511 . . . . . . 7  |-  ( a  =  A  ->  ( E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 )  <->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
4440, 43imbi12d 234 . . . . . 6  |-  ( a  =  A  ->  (
( ( a  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) )  <->  ( ( A  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) ) )
4544ralbidv 2510 . . . . 5  |-  ( a  =  A  ->  ( A. b  e.  RR  ( ( a  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) )  <->  A. b  e.  RR  ( ( A  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  A
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) ) )
468ffvelcdmda 5743 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR )  ->  ( F `
 r )  e.  RR )
4710adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR )  ->  U  e.  RR )
4846, 47resubcld 8495 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR )  ->  ( ( F `  r )  -  U )  e.  RR )
4948fmpttd 5763 . . . . . . 7  |-  ( ph  ->  ( r  e.  RR  |->  ( ( F `  r )  -  U
) ) : RR --> RR )
50 ax-resscn 8059 . . . . . . . . 9  |-  RR  C_  CC
5150a1i 9 . . . . . . . 8  |-  ( ph  ->  RR  C_  CC )
528feqmptd 5660 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( r  e.  RR  |->  ( F `
 r ) ) )
53 ssid 3224 . . . . . . . . . . . 12  |-  CC  C_  CC
54 cncfss 15222 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR -cn-> RR )  C_  ( RR -cn-> CC ) )
5550, 53, 54mp2an 426 . . . . . . . . . . 11  |-  ( RR
-cn-> RR )  C_  ( RR -cn-> CC )
5655, 6sselid 3202 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( RR
-cn-> CC ) )
5752, 56eqeltrrd 2287 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  RR  |->  ( F `  r ) )  e.  ( RR
-cn-> CC ) )
5810recnd 8143 . . . . . . . . . 10  |-  ( ph  ->  U  e.  CC )
5953a1i 9 . . . . . . . . . 10  |-  ( ph  ->  CC  C_  CC )
60 cncfmptc 15235 . . . . . . . . . 10  |-  ( ( U  e.  CC  /\  RR  C_  CC  /\  CC  C_  CC )  ->  (
r  e.  RR  |->  U )  e.  ( RR
-cn-> CC ) )
6158, 51, 59, 60syl3anc 1252 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  RR  |->  U )  e.  ( RR -cn-> CC ) )
6257, 61subcncf 15252 . . . . . . . 8  |-  ( ph  ->  ( r  e.  RR  |->  ( ( F `  r )  -  U
) )  e.  ( RR -cn-> CC ) )
63 cncfcdm 15221 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  (
r  e.  RR  |->  ( ( F `  r
)  -  U ) )  e.  ( RR
-cn-> CC ) )  -> 
( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR )  <-> 
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) : RR --> RR ) )
6451, 62, 63syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR )  <-> 
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) : RR --> RR ) )
6549, 64mpbird 167 . . . . . 6  |-  ( ph  ->  ( r  e.  RR  |->  ( ( F `  r )  -  U
) )  e.  ( RR -cn-> RR ) )
66 ivthreinc.i . . . . . . 7  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
67 reex 8101 . . . . . . . . 9  |-  RR  e.  _V
6867mptex 5838 . . . . . . . 8  |-  ( r  e.  RR  |->  ( ( F `  r )  -  U ) )  e.  _V
69 eleq1 2272 . . . . . . . . 9  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f  e.  ( RR -cn-> RR )  <->  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR ) ) )
70 fveq1 5602 . . . . . . . . . . . . . 14  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f `  a
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  a ) )
7170breq1d 4072 . . . . . . . . . . . . 13  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( f `  a )  <  0  <->  ( ( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0 ) )
72 fveq1 5602 . . . . . . . . . . . . . 14  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f `  b
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )
7372breq2d 4074 . . . . . . . . . . . . 13  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( 0  <  (
f `  b )  <->  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) ) )
7471, 733anbi23d 1330 . . . . . . . . . . . 12  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( a  < 
b  /\  ( f `  a )  <  0  /\  0  <  ( f `
 b ) )  <-> 
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) ) ) )
75 fveq1 5602 . . . . . . . . . . . . . . 15  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( f `  x
)  =  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x ) )
7675eqeq1d 2218 . . . . . . . . . . . . . 14  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( f `  x )  =  0  <-> 
( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) )
77763anbi3d 1333 . . . . . . . . . . . . 13  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 )  <->  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
7877rexbidv 2511 . . . . . . . . . . . 12  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 )  <->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) )
7974, 78imbi12d 234 . . . . . . . . . . 11  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) )  <->  ( (
a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) ) )
8079ralbidv 2510 . . . . . . . . . 10  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) )  <->  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) )
8180ralbidv 2510 . . . . . . . . 9  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) )  <->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) )
8269, 81imbi12d 234 . . . . . . . 8  |-  ( f  =  ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  -> 
( ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  <->  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) )  e.  ( RR
-cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) ) )
8368, 82spcv 2877 . . . . . . 7  |-  ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  ->  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) )  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  a
)  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  x )  =  0 ) ) ) )
8466, 83syl 14 . . . . . 6  |-  ( ph  ->  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) )  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) ) )
8565, 84mpd 13 . . . . 5  |-  ( ph  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  a )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( ( r  e.  RR  |->  ( ( F `  r )  -  U ) ) `
 x )  =  0 ) ) )
8645, 85, 5rspcdva 2892 . . . 4  |-  ( ph  ->  A. b  e.  RR  ( ( A  < 
b  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  b ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  b  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
8736, 86, 19rspcdva 2892 . . 3  |-  ( ph  ->  ( ( A  < 
B  /\  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  A )  <  0  /\  0  <  ( ( r  e.  RR  |->  ( ( F `
 r )  -  U ) ) `  B ) )  ->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) ) )
8828, 87mpd 13 . 2  |-  ( ph  ->  E. x  e.  RR  ( A  <  x  /\  x  <  B  /\  (
( r  e.  RR  |->  ( ( F `  r )  -  U
) ) `  x
)  =  0 ) )
895adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  A  e.  RR )
9089rexrd 8164 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  A  e.  RR* )
9119adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  B  e.  RR )
9291rexrd 8164 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  B  e.  RR* )
93 simprl 529 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  x  e.  RR )
9490, 92, 933jca 1182 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( A  e.  RR*  /\  B  e. 
RR*  /\  x  e.  RR ) )
95 simprr1 1050 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  A  <  x )
96 simprr2 1051 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  x  <  B )
9795, 96jca 306 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( A  <  x  /\  x  < 
B ) )
98 elioo4g 10098 . . . 4  |-  ( x  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR )  /\  ( A  <  x  /\  x  <  B ) ) )
9994, 97, 98sylanbrc 417 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  x  e.  ( A (,) B ) )
1008adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  F : RR
--> RR )
101100, 93ffvelcdmd 5744 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( F `  x )  e.  RR )
102101recnd 8143 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( F `  x )  e.  CC )
10358adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  U  e.  CC )
104 fveq2 5603 . . . . . . 7  |-  ( r  =  x  ->  ( F `  r )  =  ( F `  x ) )
105104oveq1d 5989 . . . . . 6  |-  ( r  =  x  ->  (
( F `  r
)  -  U )  =  ( ( F `
 x )  -  U ) )
10610adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  U  e.  RR )
107101, 106resubcld 8495 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( ( F `  x )  -  U )  e.  RR )
1082, 105, 93, 107fvmptd3 5701 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  ( ( F `
 x )  -  U ) )
109 simprr3 1052 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( (
r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 )
110108, 109eqtr3d 2244 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( ( F `  x )  -  U )  =  0 )
111102, 103, 110subeq0d 8433 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  ( F `  x )  =  U )
112 fveqeq2 5612 . . . 4  |-  ( c  =  x  ->  (
( F `  c
)  =  U  <->  ( F `  x )  =  U ) )
113112rspcev 2887 . . 3  |-  ( ( x  e.  ( A (,) B )  /\  ( F `  x )  =  U )  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
11499, 111, 113syl2anc 411 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A  <  x  /\  x  <  B  /\  ( ( r  e.  RR  |->  ( ( F `  r
)  -  U ) ) `  x )  =  0 ) ) )  ->  E. c  e.  ( A (,) B
) ( F `  c )  =  U )
11588, 114rexlimddv 2633 1  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983   A.wal 1373    = wceq 1375    e. wcel 2180   A.wral 2488   E.wrex 2489    C_ wss 3177   class class class wbr 4062    |-> cmpt 4124   -->wf 5290   ` cfv 5294  (class class class)co 5974   CCcc 7965   RRcr 7966   0cc0 7967   RR*cxr 8148    < clt 8149    - cmin 8285   (,)cioo 10052   -cn->ccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210
This theorem is referenced by:  ivthdichlem  15290
  Copyright terms: Public domain W3C validator