ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxcncf Unicode version

Theorem maxcncf 15297
Description: The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.)
Hypotheses
Ref Expression
maxcncf.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )
maxcncf.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> RR ) )
Assertion
Ref Expression
maxcncf  |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
Distinct variable groups:    x, X    ph, x
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem maxcncf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 maxcncf.a . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )
2 cncff 15259 . . . . . 6  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> RR )  ->  (
x  e.  X  |->  A ) : X --> RR )
31, 2syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> RR )
43fvmptelcdm 5790 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  RR )
5 maxcncf.b . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> RR ) )
6 cncff 15259 . . . . . 6  |-  ( ( x  e.  X  |->  B )  e.  ( X
-cn-> RR )  ->  (
x  e.  X  |->  B ) : X --> RR )
75, 6syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> RR )
87fvmptelcdm 5790 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  RR )
9 maxabs 11728 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )
104, 8, 9syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
1110mpteq2dva 4174 . 2  |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  =  ( x  e.  X  |->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) ) )
124, 8readdcld 8184 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( A  +  B )  e.  RR )
134, 8resubcld 8535 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( A  -  B )  e.  RR )
1413recnd 8183 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( A  -  B )  e.  CC )
1514abscld 11700 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( A  -  B ) )  e.  RR )
1612, 15readdcld 8184 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  e.  RR )
1716rehalfcld 9366 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  e.  RR )
1817fmpttd 5792 . . 3  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) ) : X --> RR )
19 ax-resscn 8099 . . . 4  |-  RR  C_  CC
20 ssid 3244 . . . . . . . . 9  |-  CC  C_  CC
21 cncfss 15265 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( X -cn-> RR )  C_  ( X -cn-> CC ) )
2219, 20, 21mp2an 426 . . . . . . . 8  |-  ( X
-cn-> RR )  C_  ( X -cn-> CC )
2322, 1sselid 3222 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2422, 5sselid 3222 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
2523, 24addcncf 15294 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  ( A  +  B
) )  e.  ( X -cn-> CC ) )
26 cncfss 15265 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
2719, 20, 26mp2an 426 . . . . . . . 8  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
28 abscncf 15267 . . . . . . . . 9  |-  abs  e.  ( CC -cn-> RR )
2928a1i 9 . . . . . . . 8  |-  ( ph  ->  abs  e.  ( CC
-cn-> RR ) )
3027, 29sselid 3222 . . . . . . 7  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
3123, 24subcncf 15295 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  ( A  -  B
) )  e.  ( X -cn-> CC ) )
3230, 31cncfmpt1f 15280 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  ( abs `  ( A  -  B )
) )  e.  ( X -cn-> CC ) )
3325, 32addcncf 15294 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) )  e.  ( X -cn-> CC ) )
34 2cn 9189 . . . . . . 7  |-  2  e.  CC
35 2ap0 9211 . . . . . . 7  |-  2 #  0
36 breq1 4086 . . . . . . . 8  |-  ( y  =  2  ->  (
y #  0  <->  2 #  0
) )
3736elrab 2959 . . . . . . 7  |-  ( 2  e.  { y  e.  CC  |  y #  0 }  <->  ( 2  e.  CC  /\  2 #  0 ) )
3834, 35, 37mpbir2an 948 . . . . . 6  |-  2  e.  { y  e.  CC  |  y #  0 }
39 cncfrss 15257 . . . . . . 7  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> RR )  ->  X  C_  CC )
401, 39syl 14 . . . . . 6  |-  ( ph  ->  X  C_  CC )
41 apsscn 8802 . . . . . . 7  |-  { y  e.  CC  |  y #  0 }  C_  CC
4241a1i 9 . . . . . 6  |-  ( ph  ->  { y  e.  CC  |  y #  0 }  C_  CC )
43 cncfmptc 15278 . . . . . 6  |-  ( ( 2  e.  { y  e.  CC  |  y #  0 }  /\  X  C_  CC  /\  { y  e.  CC  |  y #  0 }  C_  CC )  ->  ( x  e.  X  |->  2 )  e.  ( X -cn-> { y  e.  CC  |  y #  0 } ) )
4438, 40, 42, 43mp3an2i 1376 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  2 )  e.  ( X -cn-> { y  e.  CC  |  y #  0 }
) )
4533, 44divcncfap 15296 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  e.  ( X -cn-> CC ) )
46 cncfcdm 15264 . . . 4  |-  ( ( RR  C_  CC  /\  (
x  e.  X  |->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  e.  ( X
-cn-> CC ) )  -> 
( ( x  e.  X  |->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  e.  ( X -cn-> RR )  <->  ( x  e.  X  |->  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) ) : X --> RR ) )
4719, 45, 46sylancr 414 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  e.  ( X -cn-> RR )  <->  ( x  e.  X  |->  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) ) : X --> RR ) )
4818, 47mpbird 167 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  e.  ( X -cn-> RR ) )
4911, 48eqeltrd 2306 1  |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   {cpr 3667   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6007   supcsup 7157   CCcc 8005   RRcr 8006   0cc0 8007    + caddc 8010    < clt 8189    - cmin 8325   # cap 8736    / cdiv 8827   2c2 9169   abscabs 11516   -cn->ccncf 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253
This theorem is referenced by:  hovercncf  15328
  Copyright terms: Public domain W3C validator