ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincncf Unicode version

Theorem mincncf 14936
Description: The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
Hypotheses
Ref Expression
mincncf.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )
mincncf.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> RR ) )
Assertion
Ref Expression
mincncf  |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
Distinct variable groups:    x, X    ph, x
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem mincncf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mincncf.a . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )
2 cncff 14897 . . . . . 6  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> RR )  ->  (
x  e.  X  |->  A ) : X --> RR )
31, 2syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> RR )
43fvmptelcdm 5718 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  RR )
5 mincncf.b . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> RR ) )
6 cncff 14897 . . . . . 6  |-  ( ( x  e.  X  |->  B )  e.  ( X
-cn-> RR )  ->  (
x  e.  X  |->  B ) : X --> RR )
75, 6syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> RR )
87fvmptelcdm 5718 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  RR )
9 minabs 11418 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )
104, 8, 9syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  X )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  -  ( abs `  ( A  -  B )
) )  /  2
) )
1110mpteq2dva 4124 . 2  |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  =  ( x  e.  X  |->  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
124, 8readdcld 8073 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( A  +  B )  e.  RR )
134, 8resubcld 8424 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( A  -  B )  e.  RR )
1413recnd 8072 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( A  -  B )  e.  CC )
1514abscld 11363 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( abs `  ( A  -  B ) )  e.  RR )
1612, 15resubcld 8424 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  e.  RR )
1716rehalfcld 9255 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( A  +  B )  -  ( abs `  ( A  -  B ) ) )  /  2 )  e.  RR )
1817fmpttd 5720 . . 3  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) )  /  2 ) ) : X --> RR )
19 ax-resscn 7988 . . . 4  |-  RR  C_  CC
20 ssid 3204 . . . . . . . . 9  |-  CC  C_  CC
21 cncfss 14903 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( X -cn-> RR )  C_  ( X -cn-> CC ) )
2219, 20, 21mp2an 426 . . . . . . . 8  |-  ( X
-cn-> RR )  C_  ( X -cn-> CC )
2322, 1sselid 3182 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2422, 5sselid 3182 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
2523, 24addcncf 14932 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  ( A  +  B
) )  e.  ( X -cn-> CC ) )
26 cncfss 14903 . . . . . . . . . 10  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
2719, 20, 26mp2an 426 . . . . . . . . 9  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
28 abscncf 14905 . . . . . . . . 9  |-  abs  e.  ( CC -cn-> RR )
2927, 28sselii 3181 . . . . . . . 8  |-  abs  e.  ( CC -cn-> CC )
3029a1i 9 . . . . . . 7  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
3123, 24subcncf 14933 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  ( A  -  B
) )  e.  ( X -cn-> CC ) )
3230, 31cncfmpt1f 14918 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  ( abs `  ( A  -  B )
) )  e.  ( X -cn-> CC ) )
3325, 32subcncf 14933 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) )  e.  ( X
-cn-> CC ) )
34 2cn 9078 . . . . . . 7  |-  2  e.  CC
35 2ap0 9100 . . . . . . 7  |-  2 #  0
36 breq1 4037 . . . . . . . 8  |-  ( y  =  2  ->  (
y #  0  <->  2 #  0
) )
3736elrab 2920 . . . . . . 7  |-  ( 2  e.  { y  e.  CC  |  y #  0 }  <->  ( 2  e.  CC  /\  2 #  0 ) )
3834, 35, 37mpbir2an 944 . . . . . 6  |-  2  e.  { y  e.  CC  |  y #  0 }
39 cncfrss 14895 . . . . . . 7  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> RR )  ->  X  C_  CC )
401, 39syl 14 . . . . . 6  |-  ( ph  ->  X  C_  CC )
41 apsscn 8691 . . . . . . 7  |-  { y  e.  CC  |  y #  0 }  C_  CC
4241a1i 9 . . . . . 6  |-  ( ph  ->  { y  e.  CC  |  y #  0 }  C_  CC )
43 cncfmptc 14916 . . . . . 6  |-  ( ( 2  e.  { y  e.  CC  |  y #  0 }  /\  X  C_  CC  /\  { y  e.  CC  |  y #  0 }  C_  CC )  ->  ( x  e.  X  |->  2 )  e.  ( X -cn-> { y  e.  CC  |  y #  0 } ) )
4438, 40, 42, 43mp3an2i 1353 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  2 )  e.  ( X -cn-> { y  e.  CC  |  y #  0 }
) )
4533, 44divcncfap 14934 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) )  /  2 ) )  e.  ( X
-cn-> CC ) )
46 cncfcdm 14902 . . . 4  |-  ( ( RR  C_  CC  /\  (
x  e.  X  |->  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) )  /  2 ) )  e.  ( X -cn-> CC ) )  ->  (
( x  e.  X  |->  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) )  /  2 ) )  e.  ( X
-cn-> RR )  <->  ( x  e.  X  |->  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) ) : X --> RR ) )
4719, 45, 46sylancr 414 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  ( ( ( A  +  B )  -  ( abs `  ( A  -  B )
) )  /  2
) )  e.  ( X -cn-> RR )  <->  ( x  e.  X  |->  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) ) : X --> RR ) )
4818, 47mpbird 167 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) )  /  2 ) )  e.  ( X
-cn-> RR ) )
4911, 48eqeltrd 2273 1  |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479    C_ wss 3157   {cpr 3624   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925  infcinf 7058   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899    < clt 8078    - cmin 8214   # cap 8625    / cdiv 8716   2c2 9058   abscabs 11179   -cn->ccncf 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-addf 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-cnp 14509  df-tx 14573  df-cncf 14891
This theorem is referenced by:  hovercncf  14966
  Copyright terms: Public domain W3C validator