![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lttr | Unicode version |
Description: Alias for axlttrn 8090, for naming consistency with lttri 8126. New proofs should generally use this instead of ax-pre-lttrn 7988. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 8090 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 |
This theorem is referenced by: ltso 8099 ltleletr 8103 ltnsym 8107 lttri 8126 lttrd 8147 lt2add 8466 lt2sub 8481 mulgt1 8884 recgt1i 8919 recreclt 8921 nnge1 9007 recnz 9413 gtndiv 9415 xrlttr 9864 fzo1fzo0n0 10253 seqf1oglem1 10593 expnbnd 10737 expnlbnd 10738 sin01gt0 11908 cos01gt0 11909 p1modz1 11940 ltoddhalfle 12037 nno 12050 dvdsnprmd 12266 reeff1olem 14947 logdivlti 15057 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |