ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttr Unicode version

Theorem lttr 8095
Description: Alias for axlttrn 8090, for naming consistency with lttri 8126. New proofs should generally use this instead of ax-pre-lttrn 7988. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
lttr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem lttr
StepHypRef Expression
1 axlttrn 8090 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-lttrn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-mnf 8059  df-ltxr 8061
This theorem is referenced by:  ltso  8099  ltleletr  8103  ltnsym  8107  lttri  8126  lttrd  8147  lt2add  8466  lt2sub  8481  mulgt1  8884  recgt1i  8919  recreclt  8921  nnge1  9007  recnz  9413  gtndiv  9415  xrlttr  9864  fzo1fzo0n0  10253  seqf1oglem1  10593  expnbnd  10737  expnlbnd  10738  sin01gt0  11908  cos01gt0  11909  p1modz1  11940  ltoddhalfle  12037  nno  12050  dvdsnprmd  12266  reeff1olem  14947  logdivlti  15057  lgsquadlem2  15235
  Copyright terms: Public domain W3C validator