ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttr Unicode version

Theorem lttr 8216
Description: Alias for axlttrn 8211, for naming consistency with lttri 8247. New proofs should generally use this instead of ax-pre-lttrn 8109. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
lttr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem lttr
StepHypRef Expression
1 axlttrn 8211 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200   class class class wbr 4082   RRcr 7994    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  ltso  8220  ltleletr  8224  ltnsym  8228  lttri  8247  lttrd  8268  lt2add  8588  lt2sub  8603  mulgt1  9006  recgt1i  9041  recreclt  9043  nnge1  9129  recnz  9536  gtndiv  9538  xrlttr  9987  fzo1fzo0n0  10379  seqf1oglem1  10736  expnbnd  10880  expnlbnd  10881  sin01gt0  12268  cos01gt0  12269  p1modz1  12300  ltoddhalfle  12399  nno  12412  dvdsnprmd  12642  reeff1olem  15439  logdivlti  15549  lgsquadlem2  15751
  Copyright terms: Public domain W3C validator