ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttr Unicode version

Theorem lttr 7952
Description: Alias for axlttrn 7947, for naming consistency with lttri 7982. New proofs should generally use this instead of ax-pre-lttrn 7847. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
lttr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem lttr
StepHypRef Expression
1 axlttrn 7947 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 2128   class class class wbr 3966   RRcr 7732    < clt 7913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-cnex 7824  ax-resscn 7825  ax-pre-lttrn 7847
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-xp 4593  df-pnf 7915  df-mnf 7916  df-ltxr 7918
This theorem is referenced by:  ltso  7956  ltleletr  7960  ltnsym  7964  lttri  7982  lttrd  8002  lt2add  8321  lt2sub  8336  mulgt1  8735  recgt1i  8770  recreclt  8772  nnge1  8857  recnz  9258  gtndiv  9260  xrlttr  9703  fzo1fzo0n0  10086  expnbnd  10545  expnlbnd  10546  sin01gt0  11662  cos01gt0  11663  p1modz1  11694  ltoddhalfle  11788  nno  11801  dvdsnprmd  12006  reeff1olem  13134  logdivlti  13244
  Copyright terms: Public domain W3C validator