ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2basgeng Unicode version

Theorem 2basgeng 14629
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
2basgeng  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  (
topGen `  C ) )

Proof of Theorem 2basgeng
StepHypRef Expression
1 tgvalex 13170 . . . . 5  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )
213ad2ant1 1021 . . . 4  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  e.  _V )
3 simp3 1002 . . . 4  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  C  C_  ( topGen `
 B ) )
42, 3ssexd 4192 . . 3  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  C  e.  _V )
5 simp2 1001 . . 3  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  B  C_  C
)
6 tgss 14610 . . 3  |-  ( ( C  e.  _V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)
74, 5, 6syl2anc 411 . 2  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  ( topGen `
 C ) )
8 simp1 1000 . . . 4  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  B  e.  V )
9 tgss3 14625 . . . 4  |-  ( ( C  e.  _V  /\  B  e.  V )  ->  ( ( topGen `  C
)  C_  ( topGen `  B )  <->  C  C_  ( topGen `
 B ) ) )
104, 8, 9syl2anc 411 . . 3  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( ( topGen `
 C )  C_  ( topGen `  B )  <->  C 
C_  ( topGen `  B
) ) )
113, 10mpbird 167 . 2  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  C )  C_  ( topGen `
 B ) )
127, 11eqssd 3214 1  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  (
topGen `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170   ` cfv 5280   topGenctg 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-topgen 13167
This theorem is referenced by:  txbasval  14814  tgioo  15101  tgqioo  15102
  Copyright terms: Public domain W3C validator