Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2basgeng | Unicode version |
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.) |
Ref | Expression |
---|---|
2basgeng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgvalex 12690 | . . . . 5 | |
2 | 1 | 3ad2ant1 1008 | . . . 4 |
3 | simp3 989 | . . . 4 | |
4 | 2, 3 | ssexd 4122 | . . 3 |
5 | simp2 988 | . . 3 | |
6 | tgss 12703 | . . 3 | |
7 | 4, 5, 6 | syl2anc 409 | . 2 |
8 | simp1 987 | . . . 4 | |
9 | tgss3 12718 | . . . 4 | |
10 | 4, 8, 9 | syl2anc 409 | . . 3 |
11 | 3, 10 | mpbird 166 | . 2 |
12 | 7, 11 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wceq 1343 wcel 2136 cvv 2726 wss 3116 cfv 5188 ctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: txbasval 12907 tgioo 13186 tgqioo 13187 |
Copyright terms: Public domain | W3C validator |