ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2basgeng Unicode version

Theorem 2basgeng 14472
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
2basgeng  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  (
topGen `  C ) )

Proof of Theorem 2basgeng
StepHypRef Expression
1 tgvalex 13013 . . . . 5  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )
213ad2ant1 1020 . . . 4  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  e.  _V )
3 simp3 1001 . . . 4  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  C  C_  ( topGen `
 B ) )
42, 3ssexd 4183 . . 3  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  C  e.  _V )
5 simp2 1000 . . 3  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  B  C_  C
)
6 tgss 14453 . . 3  |-  ( ( C  e.  _V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)
74, 5, 6syl2anc 411 . 2  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  ( topGen `
 C ) )
8 simp1 999 . . . 4  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  B  e.  V )
9 tgss3 14468 . . . 4  |-  ( ( C  e.  _V  /\  B  e.  V )  ->  ( ( topGen `  C
)  C_  ( topGen `  B )  <->  C  C_  ( topGen `
 B ) ) )
104, 8, 9syl2anc 411 . . 3  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( ( topGen `
 C )  C_  ( topGen `  B )  <->  C 
C_  ( topGen `  B
) ) )
113, 10mpbird 167 . 2  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  C )  C_  ( topGen `
 B ) )
127, 11eqssd 3209 1  |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  (
topGen `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   _Vcvv 2771    C_ wss 3165   ` cfv 5268   topGenctg 13004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-topgen 13010
This theorem is referenced by:  txbasval  14657  tgioo  14944  tgqioo  14945
  Copyright terms: Public domain W3C validator