ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqi GIF version

Theorem cnveqi 4803
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
Hypothesis
Ref Expression
cnveqi.1 𝐴 = 𝐵
Assertion
Ref Expression
cnveqi 𝐴 = 𝐵

Proof of Theorem cnveqi
StepHypRef Expression
1 cnveqi.1 . 2 𝐴 = 𝐵
2 cnveq 4802 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2ax-mp 5 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1353  ccnv 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3136  df-ss 3143  df-br 4005  df-opab 4066  df-cnv 4635
This theorem is referenced by:  mptcnv  5032  cnvxp  5048  xp0  5049  imainrect  5075  cnvcnv  5082  mptpreima  5123  co01  5144  coi2  5146  cocnvres  5154  fcoi1  5397  fun11iun  5483  f1ocnvd  6073  cnvoprab  6235  f1od2  6236  mapsncnv  6695  sbthlemi8  6963  caseinj  7088  djuinj  7105  fisumcom2  11446  fprodcom2fi  11634
  Copyright terms: Public domain W3C validator