ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqi GIF version

Theorem cnveqi 4823
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
Hypothesis
Ref Expression
cnveqi.1 𝐴 = 𝐵
Assertion
Ref Expression
cnveqi 𝐴 = 𝐵

Proof of Theorem cnveqi
StepHypRef Expression
1 cnveqi.1 . 2 𝐴 = 𝐵
2 cnveq 4822 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2ax-mp 5 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ccnv 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-in 3150  df-ss 3157  df-br 4022  df-opab 4083  df-cnv 4655
This theorem is referenced by:  mptcnv  5052  cnvxp  5068  xp0  5069  imainrect  5095  cnvcnv  5102  mptpreima  5143  co01  5164  coi2  5166  cocnvres  5174  fcoi1  5418  fun11iun  5504  f1ocnvd  6100  cnvoprab  6263  f1od2  6264  mapsncnv  6725  sbthlemi8  6997  caseinj  7122  djuinj  7139  fisumcom2  11487  fprodcom2fi  11675
  Copyright terms: Public domain W3C validator