| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveqi | GIF version | ||
| Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 4896 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ◡ccnv 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-br 4084 df-opab 4146 df-cnv 4727 |
| This theorem is referenced by: mptcnv 5131 cnvxp 5147 xp0 5148 imainrect 5174 cnvcnv 5181 mptpreima 5222 co01 5243 coi2 5245 cocnvres 5253 fcoi1 5506 fun11iun 5593 f1ocnvd 6208 cnvoprab 6380 f1od2 6381 mapsncnv 6842 sbthlemi8 7131 caseinj 7256 djuinj 7273 fisumcom2 11949 fprodcom2fi 12137 |
| Copyright terms: Public domain | W3C validator |