| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveqi | GIF version | ||
| Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 4840 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ◡ccnv 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-cnv 4671 |
| This theorem is referenced by: mptcnv 5072 cnvxp 5088 xp0 5089 imainrect 5115 cnvcnv 5122 mptpreima 5163 co01 5184 coi2 5186 cocnvres 5194 fcoi1 5438 fun11iun 5525 f1ocnvd 6125 cnvoprab 6292 f1od2 6293 mapsncnv 6754 sbthlemi8 7030 caseinj 7155 djuinj 7172 fisumcom2 11603 fprodcom2fi 11791 |
| Copyright terms: Public domain | W3C validator |