Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnveqi | GIF version |
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cnveq 4785 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ◡ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-in 3127 df-ss 3134 df-br 3990 df-opab 4051 df-cnv 4619 |
This theorem is referenced by: mptcnv 5013 cnvxp 5029 xp0 5030 imainrect 5056 cnvcnv 5063 mptpreima 5104 co01 5125 coi2 5127 cocnvres 5135 fcoi1 5378 fun11iun 5463 f1ocnvd 6051 cnvoprab 6213 f1od2 6214 mapsncnv 6673 sbthlemi8 6941 caseinj 7066 djuinj 7083 fisumcom2 11401 fprodcom2fi 11589 |
Copyright terms: Public domain | W3C validator |